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Abstract 
We use a cognitive model to explain memory-related cognitive strategies and mechanisms 

in an interrupted learning task. The model was developed in the ACT-R cognitive architecture 

and incorporates ideas from the well-established Cognitive Load Theory. This theoretical 

framework deals with the question to what extent aspects of learning situations demand 

learners’ working memory resources. Our model was developed to account for human data of 

an experiment that required participants to learn easy or difficult combinations of arbitrary 

geometric symbols while being interrupted by a secondary task. The interrupting task requested 

participants to search, count, and remember the amount of indicated targets from a screen with 

geometric symbols. The results showed that participants having to learn more complex symbol 

combinations learned slower but reached a comparable level of performance in the end. In 

addition, participants in this condition were less impaired by the induced interruptions. To 

clarify potential underlying memory-related strategies and mechanisms, the cognitive 

architecture ACT-R was used to develop four computational models of the task. Our models 

explore the necessity of including different subsymbolic mechanisms to explain the data. The 

final model, which included spreading activation and partial matching mechanisms, was used 

to generate fMRI predictions. These predictions provide a link to the Cognitive Load Theory 

and contribute to the discussion of underlying mechanisms on a neural level. In conclusion, the 

presented work emphasizes the influence of task characteristics and supports a process-related 

view on cognitive load in instructional scenarios. 

 

Keywords: Cognitive load theory; Cognitive modeling; Learning performance; Element 

interactivity; Task interruption  
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1 Introduction 
Learning is an essential part of human experience over the entire life course, whether trying 

to ride a bike as a child or learning a new language as an adult. Characteristically, the 

establishment of the related knowledge structures does not occur all at once but gradually over 

time. This process is accompanied by changes in performance that correspond to variations in 

cognitive resource demands. But what cognitive mechanisms are responsible for these changes 

and how do task-inherent and situational features, such as interruptions, affect the underlying 

dynamics?  

To investigate these issues, we present a cognitive modeling approach that leverages the 

cognitive architecture ACT-R (Anderson, 2007) to model learner behavior in an interrupted 

learning task (cf. Fechner et al., 2016). The underlying task setting employed a controlled 

stimulus-response learning paradigm to put the interplay of load-inducing factors under an 

experimental microscope. Our basic learning material consisted of four easy or difficult symbol 

combinations that were presented repeatedly over the task. The included symbols were split up 

in an input part, that was shown at the beginning of a trial, and a response part, where the 

corresponding symbol had to be selected. Complexity was determined by the number of 

symbols in a defined order that formed a combination. Inducing additional situational 

constraints, the learning process was interrupted several times by an embedded secondary task: 

a visual search screen with a symbol counting request. As a theoretical framework for model 

development, we use the well-established Cognitive Load Theory (e.g., Sweller, Van 

Merrienboër, & Paas, 1998).  

To summarize the results: we can connect both learning and interruption effects to activation 

patterns of memory structures to explain changes in performance. A novel correspondence 

emerges between the theoretically postulated concept of element interactivity of the Cognitive 

Load Theory and the spreading activation mechanism in ACT-R. Our simulated fMRI 

predictions further support a process perspective of decreasing cognitive load with the 

increasing establishment of stable knowledge structures on a neural level.  

We will now first discuss the relevant theoretical and methodological background, outline 

the experimental task in more detail, and explain the underlying modeling concepts. 

Subsequently, we summarize the experimentally obtained behavioral patterns from the human 

data and compare them with the results from our cognitive model. With four alternative versions 

of our cognitive model, we explore the relevance of defined mechanisms to explain the 

observed patterns from the human data. We further address the performance of the final model 
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on a neural level by reporting results from simulated fMRI analyses and link these to predictions 

of the Cognitive Load Theory. 

1.1 Cognitive load theory 

When instructing someone in a new task, instruction-related cognitive demands need to be 

considered and monitored carefully. A well-established theory in this field is the Cognitive 

Load Theory (Sweller, Ayres, & Kalyuga, 2011; Sweller, Van Merrienboër, & Paas, 1998), 

which addresses the construct of cognitive load in terms of working memory resources required 

to perform a certain task in a given situational context (Kalyuga & Plass, 2018). It builds on 

vested models of memory (Anderson, 1983; Atkinson & Shiffrin, 1971; Baddeley, 1992) that 

indicate limited working memory resources in terms of both duration (around 20 to 30 s; see 

e.g., Wickens, Hollands, Banbury, & Parasuraman, 2013) and capacity of stored information 

(around four; see e.g., Cowan, 2000). In contrast, long-term memory resources provide nearly 

infinite storage capacity and duration and can be used to establish permanent knowledge 

structures. These emerging organized knowledge structures are described as schemata that 

involve both declarative and procedural components (Gagné & Dick, 1983). Existing schemata 

influence how learners manage certain learning content and can be modified with new 

knowledge. With reference to established models of learning and skill acquisition, higher 

amounts of resource investment are plausible in earlier process stages when knowledge 

structures still need to be established (Anderson, 1982; Fitts & Posner, 1967; Ebbinghaus, 

1964). The initially declarative knowledge becomes increasingly procedural and automated 

with task progression and, in consequence, demands less cognitive resources (Tenison & 

Anderson, 2015; Tenison, Fincham, & Anderson, 2016).  

In addition, the theory postulates the distinct facets of extraneous, intrinsic, and germane 

cognitive load that relate to different sources in learning situations. Extraneous cognitive load 

refers to harmful effects from task-irrelevant features (Sweller, 1988). It arises from a complex 

instructional presentation or interfering situational aspects, such as a competing goal from an 

interrupting task (Gerjets, Scheiter, & Schorr, 2003). Intrinsic cognitive load relates to the 

complexity of the used learning material in relation to existing previous knowledge (Sweller & 

Chandler, 1994). In addition, the concept of element interactivity was introduced. Element 

interactivity in learning material increases with the number of logically related information 

units, for example, the number of symbols in a defined order, that must be processed 

simultaneously in working memory (Chen, Kalyuga, & Sweller, 2017; Ngu, Phan, Yeung, & 

Chung, 2018; Sweller, 2010). In previous research, this aspect has been addressed 



PREPRINT OF ACCEPTED MANUSCRIPT 

 4 

experimentally with a priori estimates based on the number of interrelated dimensions or 

elements that a learner had to deal with at the same time (e.g., Beckmann, 2010; Wirzberger, 

Beege, Schneider, Nebel, & Rey, 2016; Wirzberger, Esmaeili Bijarsari, & Rey, 2017). 

Characteristically, changes in element interactivity are related to the nature of what is learned, 

and its amount should be kept at a manageable level for the individual learner to foster optimal 

learning outcomes (Sweller, 2010). Finally, germane cognitive load emerges from the 

establishment of knowledge structures itself, which is specified as schema acquisition and 

automation in the theoretical framework (Paas, Tuivonen, Tabbers, & Van Gerven, 2003; 

Sweller et al., 1998). An increasing prevalence of schemata that can be applied to solve a task 

would be evident with improved performance under less invested effort. Related to the current 

task setting, a learner might achieve accurate reactions on the presented symbols increasingly 

faster over time. Germane cognitive load operates under the assumption of highly motivated 

learners that devote all available resources to the establishment of mental knowledge structures.  

Extraneous, intrinsic, and germane cognitive load were assumed to contribute independently 

and additively to overall cognitive resource demands in learning contexts (Sweller et al., 1998). 

Due to difficulties in empirical assessment and psychometric separation, this assumption of 

additivity is increasingly queried (e.g., Kalyuga, 2011; Kalyuga & Singh, 2016). Therefore, 

recent evidence suggests a process-driven reconceptualization of the originally postulated 

three-component model (Wirzberger, Esmaeili Bijarsari, & Rey, 2017; Wirzberger, Herms, 

Esmaeili Bijarsari, Eibl, & Rey, 2018). It takes into account that the previously outlined facets 

represent distinct ontological categories (De Jong, 2010). On the one hand, the intrinsic and 

extraneous cognitive load are related to static structural aspects of the learning context that can 

be determined a priori. On the other hand, the germane cognitive load has to be considered on 

a dynamic process-related level, as it changes with increasing progress in the learning task. 

Support for separate consideration and dynamic view on changes in cognitive load during 

learning also arises from research on self-regulated learning. For example, Seufert (2018) 

emphasizes that both the intrinsic and extraneous cognitive load facet represent task 

affordances, which are imposed by the learning material, whereas the germane cognitive load 

refers to learner-based decisions.  

According to Sweller (2018), the Cognitive Load Theory has originally been developed as a 

theoretical construct to explain experimentally obtained results, with little attempt to actually 

measure cognitive load. Nevertheless, since the initial description of the theory, a variety of 

cognitive load measures has emerged (Paas et al., 2003; Sweller et al., 2011; Zheng, 2018). 

They operate on various parameters that can be categorized into subjective ratings, performance 
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measures, physiological markers, and behavioral indices. Amongst the earliest attempts to 

provide insights into cognitive demands prevalent in a learning situation, retrospectively 

applied subjective rating scales are a broadly used approach. For example, the unidimensional 

mental effort scale by Paas (1992) requires participants to rate their perceived mental effort on 

a nine-point Likert scale ranging from ‘very, very low (1)’ to ‘very, very high (9)’. Cognitive 

resource demands are further observable in continuous performance-related parameters, such 

as reaction times, error rates, and accuracy. In instructional cognitive load research, these 

parameters have been inspected in dual-task paradigms (e.g., Brünken, Plass, & Leutner, 2004). 

Additional means of continuous assessment employ physiological markers related to heart rate, 

galvanic skin response, pupil diameter, or electroencephalographic frequency band power (e.g., 

Scharinger, Kammerer, & Gerjets, 2015). Contrary to these measures, the occurrence of 

behavioral indices can mostly or entirely be controlled by the learner (Chen et al., 2016). 

Relevant parameters of inspection arise from speech signals, gaze patterns or mouse 

movements. For example, existing research shows that higher levels of cognitive load raise 

planning processes that result in a slower speech tempo and more frequent and longer pauses 

in the speech flow (e.g., Herms, Wirzberger, Eibl, & Rey, 2018; Müller, Großmann-Hutter, 

Jameson, Rummer, & Wittig, 2001). 

A conceptual approach to obtain information on individual cognitive load facets on a neural 

level was postulated by Whelan (2007). It aligns to existing evidence from functional 

neuroimaging literature that builds around the measurement of peaks in the blood oxygen level 

due to neural activity. Based on this rationale, he suggests that extraneous cognitive load would 

correspond in particular to activity in brain regions responsible for sensory processing, such as 

the posterior parietal association cortex, Broca’s area, and Wernicke’s area (e.g., Meredith, 

2001; Whelan, 2007). By contrast, the intrinsic cognitive load component should be associated 

with activity in brain regions involved in maintaining and manipulating the attentional focus, 

in particular, the dorsolateral prefrontal cortex (e.g., Banich et al., 2000; Miller & Cohen, 2001; 

Whelan, 2007). Finally, germane cognitive load is assumed to hold connections to activity in 

brain regions related to reward, which fosters motivation. Highly motivated learners are more 

likely to devote available cognitive resources solely to processes and strategies of schema 

acquisition. Corresponding brain regions involve the superior frontal sulcus and the 

intraparietal sulcus (e.g., Taylor, Welsh, Wager, Phan, Fitzgerald, & Gehring, 2004; Whelan, 

2007). Although this approach offers high explanatory potential, so far it has not been explicitly 

tested yet due to the high methodological effort and inherent task-related constraints. A step 
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towards testing this framework leverages existing approaches in model-based cognitive 

neuroscience that simulate fMRI data from activity patterns emerging from a cognitive model.  

1.2 The cognitive architecture ACT-R  

Although the Cognitive Load Theory proposes several important concepts in learning, it 

does not explain how learning itself works. To connect this conceptual theory directly to human 

learning, we simulated it in the cognitive architecture ACT-R (Anderson, 2007). This requires 

a precise formalization of the necessary steps related to solving a given task into underlying 

cognitive actions.  

ACT-R is a prevalent and broadly used production-based modeling approach, that is 

particularly characterized by its modular brain-inspired structure. The included modules 

represent goal planning (goal module), declarative memory (declarative module), intermediate 

problem states (imaginal module), action coordination (procedural module), the handling of 

visual and auditory inputs (visual and aural module), and motor and vocal outputs (motor and 

vocal module). Buffers serve as an interface between modules and processes in different 

modules can be executed in parallel. Known bottlenecks in information processing are 

represented by the limited capacity of a single information element per module at the same time 

(e.g., Borst, Taatgen, & van Rijn, 2010; Byrne & Anderson, 2001; Salvucci & Taatgen, 2008).  

All of ACT-R’s modules have been linked to certain brain regions and can be used to predict 

fMRI data (e.g., Anderson, 2007; for a recent data-driven validation see Borst, Nijboer, 

Taatgen, van Rijn, & Anderson, 2015). For instance, when a model retrieves information from 

declarative memory, the increased activity in the declarative module corresponds to activity in 

a region around the inferior frontal gyrus in the prefrontal cortex. This area has proven to be 

sensitive to both retrieval and storage operations. Efforts made in transforming mental 

representations, such as the number of targets on a visual search screen during counting, are 

reflected in activity in the imaginal module. It is associated with a region close to the 

intraparietal sulcus in the posterior parietal cortex, which is sensitive to representational 

changes. Following a multi-component perspective, both modules are considered part of ACT-

R’s working memory (Nijboer, Borst, Van Rijn, & Taatgen, 2016).                                     

To decide which cognitive action to perform next, ACT-R applies production rules. 

Production rules consist of a condition part and an action part and are evaluated by the 

procedural module with regards to the content of the tested buffers. Based on the resulting 

pattern, a matching production rule is chosen, which triggers the related action. For instance, if 

the task is to react to a previously displayed symbol, the visual module encodes the matching 
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symbol button on the screen, and the motor module is not in use, then the mouse can be moved 

to the button and the mouse click can be initiated. A chosen production rule takes 50 ms to be 

executed. 

Characteristically, ACT-R uses a hybrid approach of both symbolic and subsymbolic 

mechanisms: chunks of information from declarative memory are retrieved not only on the 

match of content in their slots but also based on their level of activation. Activation is calculated 

from the history and context of use of a chunk and has to exceed a defined threshold to be 

eligible for selection. The full equation for each chunk i involves the components displayed in 

Equation 1: 

𝐴! =	𝐵! +	∑ ∑ 𝑊"#𝑆#! +	∑ 𝑃𝑀$! + 	𝜀$#" .                        (1) 

The recency and frequency of use of the chunk i is reflected by the base-level activation Bi. As 

outlined in Equation 2, it bases on the number of presentations n for the respective chunk i, the 

time tj since the jth presentation, and a decay parameter d. Each time a chunk is presented, its 

base-level activation is increased, which decays as a power function of the time since that 

presentation. These decay effects are summed up and then transformed logarithmically. Thus, 

the more often certain information is experienced, for instance, a ‘square – circle’ combination, 

the better it is retained in memory.  

𝐵! = 𝑙𝑛.∑ 𝑡#%&'
#() 0.                                                    (2) 

With the spreading activation mechanism, ACT-R accounts for the influence of the current 

context in retrieving information from memory. That is, related information in ACT-R’s buffers 

will spread information to chunks in memory. For example, if ‘square’ is encoded in the 

imaginal module, this will make it more likely to retrieve chunks containing ‘square’. In some 

situations, this can make it harder to retrieve the correct information. For example, in the current 

task, the ‘square – circle’ and ‘circle – square’ combinations in the difficult condition contain 

the same symbols and would receive equal activation upon a retrieval request. In Equation 1 

Wkj represents the amount of activation from source j in buffer k, and Sji, the strength of 

association from source j to chunk i. A source of spreading activation can be any slot of a 

retrieved chunk, for example, the values ‘square’ and ‘circle’ in the slots of a symbol 

combination chunk. Wkj and Sji are summed over all buffers that provide spreading activation, 

such as the goal and/or imaginal buffer, and all chunks in the slots of the chunks in buffer k. 

As humans sometimes retrieve related but ultimately wrong information from memory (so-

called ‘error of commission’), in the current task a wrong input-response symbol combination, 
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ACT-R further includes a partial matching mechanism. Based on initially defined similarities 

between chunks, a mismatch between request and actual retrieval is calculated. The higher the 

mismatch, the more the activity of the chunk is penalized (Lebiere, 1999). For example, when 

trying to retrieve ‘star – triangle’, ‘circle – square’ would be penalized more than ‘circle – 

triangle’. In Equation 1, P reflects the amount of weighting given to the similarity in slot l and 

Mli represents the similarity between the value l in the retrieval specification and the value in 

the corresponding slot of chunk i. Mli is summed over the slot values of the retrieval 

specification. The value of ε represents noise that is computed at the time of a retrieval request. 

The time to retrieve a chunk from memory is also dependent on its activation, as shown in 

Equation 3: 

𝑇𝑖𝑚𝑒 = 𝐹𝑒%* .                                                    (3) 

A represents the activation of the retrieved chunk, while F is the latency factor. The higher 

the activation of a chunk, the faster it can be retrieved. A retrieval failure occurs if no chunk 

has an activation above the retrieval threshold. To calculate the time until the retrieval failure 

is reported, the chunk activation is replaced by the retrieval threshold τ, as displayed in Equation 

4:  

𝑇𝑖𝑚𝑒 = 𝐹𝑒%+ .                                                    (4) 

Thus, the response time in the current task depends on if and how fast a symbol combination 

can be retrieved from declarative memory. 

2 Methods 

2.1 Task  

The task setting and the related human data from a sample of 116 student participants were 

already reported in Wirzberger et al. (2017). As displayed in Figure 1, the participants in this 

study had to learn abstract geometric symbol combinations via trial and error by verifying 

feedback (Shute, 2008). They completed 64 trials in total that were equally distributed across 

the four potential symbol combinations. The symbol combinations itself consisted of an input 

part, which was presented at the beginning of a trial, and a subsequent response part. Following 

the between-subjects manipulation of intrinsic cognitive load, participants were randomly 

assigned to either the easy or difficult condition. In the easy condition, the input part included 

one symbol, while in the difficult condition two symbols were presented one after another. They 
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always differed from each other, i.e., there were no combinations such as ‘square – square’. 

Corresponding to the concept of increased element interactivity, in the difficult condition the 

order of the displayed input symbols mattered as well. For example, ‘square – circle’ resulted 

in a different result compared to ‘circle – square’. In the response part, the participants had to 

choose the symbol that completed the combination from the four potential response options by 

clicking on the matching symbol button. Afterward, they received feedback on their response, 

that also included the correct response in case of an error. All participants in the same condition 

received the same symbol combinations. 

 

Figure 1. Sample learning trial in the easy condition (adapted from Wirzberger et al., 2017). In the difficult 

condition, the second symbol was shown accordingly after the first symbol for 2000 ms, separated by an additional 

clear screen for 200 ms. 

All participants further received an interrupting task at the same five defined moments in the 

task to induce extraneous cognitive load. During the task, the participants were shown a visual 

search screen with four types of abstract geometric symbols, as shown in Figure 2. The symbols 

were similar to the learning task and for each symbol, seven to nine items were present on the 

screen. Similarity and an appropriate task duration should ensure the interrupting potential 

(Gillie & Broadbent, 1989; Monk, Trafton, & Boehm-Davis, 2008; Trick, 2008). The visual 

search screen was accompanied by the instruction to count two of the displayed types of 

symbols (targets), for example, all stars and squares. After participants had finished counting 

or after the maximum time span of 10 s had passed (whatever came first), they received separate 

response screens for each symbol one after another. Again, the instruction on the target symbol 

was displayed above the response buttons. The participants had to choose their answer by 
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mouse click from the presented options. Including this task followed the underlying assumption 

that the prevalence of distracting tasks with competing goals represents a common situational 

constraint in computer-based learning environments (Gerjets et al., 2003). According to 

Wickens (2002), a resource-demanding perceptual task can cause substantial interference with 

a cognitive task that involves the storage and/or transformation processes in working memory. 

 

Figure 2. Sample interruption trial (adapted from Wirzberger et al., 2017). Participants received an instruction on 

the target symbols above the visual search screen (not displayed). Both response screens were separated by a clear 

screen for 200 ms. 

2.2 Model concept 

The main idea of our model was to learn the previously introduced stimulus-response 

combinations in declarative memory, while coping with the induced interruptions. To achieve 

that, we presented the same 64 learning trials with the same duration and contents (see Figure 

1) and the same five interruptions (see Figure 2) to the model as to the human participants. As 

we aimed to determine which underlying mechanisms were necessary to explain the human 

data, we compared four versions of our model that included different activation-related 

parameters: a model that operated on base-level activation only (Base), a model that 

additionally used spreading activation (SA-only), a model that additionally used partial 

matching (PM-only), and a model that additionally used a combination of both spreading 

activation and partial matching (SA-PM).  

2.2.1 Symbol learning task 

Each model run starts with an initial setting of the task goal, which was assumed to result 

from the previously read instruction. Next, each learning trial builds upon three task-related 
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steps, as displayed in Figure 3. At first, the presented symbol is visually encoded, which is 

repeated for the second symbol in the case of the difficult condition. This procedure stores an 

intermediate representation of all encoded visual content in the problem state, for instance, the 

input symbols ‘square – circle’ in the difficult condition. Next, our model attempts to retrieve 

the associated response symbol from declarative memory. In the second step, a response is 

selected from the provided opportunities on the screen, either according to the retrieved chunk 

or by random choice in case of no successful retrieval. The final step comprises encoding the 

feedback on the given response and, in the case of a false response, an update of the existing 

intermediate representation. This final information contains both the input and the correct 

response parts of the symbol combinations, such as ‘square – circle – square’. This information 

is then stored in declarative memory. 

 

Figure 3. Outline of steps to perform in each the learning trial of the task. The core structure stayed the same across 

all versions of the model. The inclusion of spreading activation and/or partial matching affected the retrieval of 

the solution after encoding the presented input symbol/s. 

2.2.2 Base-level activation, spreading activation, and partial matching 

In the first trials, there is no sufficiently matching content or no content at all to retrieve, 

resulting in slower and less accurate responses. Corresponding to the underlying base-level 

activation (see Equation 2), after being presented the input symbols several times and retrieving 
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related content from declarative memory, our model performs increasingly faster and more 

accurate due to increasing chunk activation, as we will show in the results section in detail. 

Increased element interactivity related to intrinsic cognitive load (Sweller & Chandler, 1994; 

Sweller, 2010) is reflected in the spreading activation mechanism. Spreading activation arises 

in our model from the intermediate representation of the shown input symbol/s in the imaginal 

buffer. In line with the theory, symbol combinations in the difficult condition contain an 

additional symbol that increases element interactivity due to the related order information. On 

this account, the spreading activation mechanism particularly affects the difficult condition: 

Symbol combinations including the same input symbols, such as ‘square – circle’ and ‘circle – 

square’, receive equal activation, independent of the correct symbol order. In consequence, if 

input order is not taken into account, the model retrieves a wrong input-response association in 

half of the cases. 

Regarding the partial matching mechanism, if the model retrieves a wrong stimulus-response 

combination, the activation of the mismatching combination is decreased due to the mismatch 

penalty. In the easy condition, the match or mismatch relates to one symbol slot, while in the 

difficult condition, there are two slots in the retrieved chunk that either match or mismatch, one 

for each symbol. In consequence, the related chunk activation gets penalized double in the 

difficult condition as none of the slots matches. We will see this difference reflected in the 

results.  

2.2.3 Interrupting visual search task 

As displayed in Figure 4, following a goal change due to the bottom-up triggered saliency 

of the interrupting task, the model encodes, counts, and responds to the indicated target 

symbols. The task switch represents the immediate attention to the related screen change and 

followed the model implemented by Wirzberger and Russwinkel (2015). Tying in with 

evidence on pre-attentive and attentive processes in the visual module of ACT-R (Nyamsuren 

& Taatgen, 2013), the second and subsequent steps in the visual search are enhanced by 

additional information related to stimulus characteristics. In more detail, after finding the first 

symbol on the screen, it is compared with the target symbol. If there is a match, the stimulus 

color is added to the next search request. Subsequently, the pre-attentive search for unattended 

stimuli focuses only on matching colors and only these will receive full attention. Hence, the 

search process is sped up. In addition, we assumed counting to be a highly trained behavior that 

occurs almost automatically, thus a simple counting function was applied instead of 

intermediate retrievals after each counting step (cf. Nijboer et al., 2016). After finishing the 
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counting part, on each of the two response screens the model encodes the requested symbol and 

retrieves the potential answer. 

 

Figure 4. Outline of steps to perform in the interrupting task. The task structure was the same for both conditions 

and all occurrences of the interruption. 

When resuming the learning task, in line with Altmann and Trafton (2002) the model 

attempts to retrieve the previous task goal and thus restores its representation. Interruption 

effects can be attributed to a decay in the activation of chunks related to the learning task that 

slows down subsequent retrieval requests (Borst, Taatgen, & van Rijn, 2010, 2015; Trafton, 

Altmann, Brock, & Minz, 2003). 
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2.3 Parameter fitting 

The behavior of ACT-R models can be changed within limits by fitting a number of 

parameters. Parameter settings in the reported models are outlined in Table 1 and are in line 

with the range of reported standard values (e.g., Anderson, Bothell, Lebiere, &, Matessa, 1998). 

The base-level learning (bll) parameter was fixed for the different models, the other parameters 

in Table 1 were adapted to improve the fit to the data. In addition, we assigned the goal chunk 

for the learning task an initial base-level of 70 (relates to n in Equation 2) to account for the 

fact that participants had received a comprehensive instruction on this task. For the partial 

matching mechanism, we set the similarities between non-matching symbols to -1 (relates to M 

in Equation 1), and for the spreading activation mechanism, we defined the content of the 

imaginal buffer as a source for spreading activation upon each retrieval from declarative 

memory with a total activation of 1 (relates to Wk in Equation 1). 

Table 1 

Parameter settings related to chunk activation and retrieval time 

Parameter Description Link to Equations 
Base 

model 

SA-only 

model 

PM-only 

model 

SA-PM 

model 

mas 
Maximum associative 

strength 
S in Equation 1 / 4.2 / 1.7 

mp Mismatch penalty P in Equation 1 / / 1.0 0.401 

ans Instantaneous noise ε in Equation 1 0.6 0.6 0.6 0.2 

bll Base-level decay d in Equation 2 0.5 0.5 0.5 0.5 

lf Latency factor F in Equation 3/4 0.7 1.4 1.4 3.8 

rt Retrieval threshold τ in Equation 4 -1.3 -0.99 -0.85 0.11 

3 Results 
All inspected model data based on n = 100 model runs in each condition since it was not our 

goal to create an exactly mapping model run for each human participant (neasy = 55, ndifficult = 

58). Rather, we aimed to obtain robust conclusions from the average model performance. We 

further aimed at achieving the best possible model fit related to both accuracy and reaction time 

in either condition. Table 2 summarizes the goodness-of-fit indices across the compared 

models. Compared to the base model, the overall pattern demonstrates the benefit of including 

both the spreading activation and partial matching mechanisms to explain the human data. On 
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closer inspection, the root mean squared scaled deviation (RMSSD) drops by almost one 

standard error in the SA-PM model. The proportion of explained variance (R2) stays at the same 

level but shows a more balanced pattern across measures and conditions. 

Table 2 

Goodness-of-fit indices across compared models separated by task conditions 

 Base model SA-only model PM-only model SA-PM model 

 RMSSD R2 RMSSD R2 RMSSD R2 RMSSD R2 

Accuracy         

Easy 3.25 0.76 2.02 0.62 5.19 0.18 1.51 0.69 

Difficult 4.29 0.56 5.17 0.08 1.87 0.68 2.07 0.57 

Reaction time         

Easy 1.59 0.64 1.75 0.41 1.75 0.42 1.67 0.52 

Difficult 2.08 0.39 1.98 0.19 2.33 0.50 2.16 0.58 

Overall 2.80 0.59 2.73 0.33 2.79 0.45 1.85 0.59 

Note. RMSSD = root mean squared scaled deviation, indicates deviation from exact location in units of standard 

errors; R2 = proportion of explained variance, indicates fit in relative trend magnitude. 

3.1 Human data 

To enable the comparison with model performance, human and model performance are 

displayed in Figure 5 to Figure 8. The grey dots represent the mean across all participants for 

each of the 64 trials in the learning task, with standard errors indicated by error bars. The red 

dashed lines mark the first trial after an interruption (i.e., resumption period).  

To summarize, the accuracy data indicate that the human participants in the difficult 

condition learn slower. In the end, both conditions reach an almost comparable level. Overall, 

the emerging interruption effects are more prevalent in the easy condition.  

With respect to reaction times, the human participants speed up with increasing task progress 

in both conditions. Since our comparisons focus only on correctly solved trials, standard errors 

decrease over the trials as the number of correct reactions increase. Interruption effects are more 

distinctive in the easy condition, although they are visible in the difficult condition as well.  
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3.2 Base model 

At first, we created a base model that operates only on base-level activation, without 

considering spreading activation or partial matching. The obtained results are shown in Figure 

5. The model data indicate an almost comparable pattern of accuracy in both conditions. On 

closer look, the model learns slightly slower in the difficult condition, but outperforms the 

human participants in both conditions.  

With respect to reaction time, our model is faster than the human participants at the 

beginning in both conditions. Over the subsequent trials, it can map the human performance 

quite well in the easy condition. In the difficult condition, our model reacts constantly slower 

than the human participants. Interruption effects are visible in both conditions, but especially 

in the easy condition, they are less distinct compared to the human data. 

 

 

Figure 5. Accuracy (upper part) and reaction times (lower part) for human and model data for the base model in 

the easy and difficult condition. Reaction times are based only on correct trials. Error bars indicate standard errors 

for human data. Red dashed lines indicate trials after an interruption. 

3.3 SA-only model 

Our second model adds spreading activation to the base-level model. Figure 6 shows the 

results. It shows quite distinct patterns for accuracy in both conditions. For the easy condition, 
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the model achieves a good mapping particularly in the first half of the trials. The difficult 

condition reveals that the SA-only model cannot fully map the learning effect but stays at 

around 50% accuracy until the end (with a 25% chance level).  

Approaching reaction time, after the first ten trials our model shows an almost comparable 

speed of reactions to the human participants in both conditions. The mapping is slightly better 

in the easy condition. In general, the interruption effects are prevalent in both conditions but 

less visible compared to the human data.  

 

 

Figure 6. Accuracy (upper part) and reaction times (lower part) for human and model data for the SA-only model 

in the easy and difficult condition. Reaction times are based only on correct trials. Error bars indicate standard 

errors for human data. Red dashed lines indicate trials after an interruption. 

Compared to our base model, the additional activation that spreads from the content in the 

imaginal buffer increases the activation of chunks with matching slots. As we had to remove 

the ordered retrieval to map this effect, in the difficult condition, this applies to chunks 

regardless of the symbol order. For example, both the chunks ‘square – circle’ and ‘circle – 

square’ receive equal activation, which results in retrieving the wrong symbol combination in 

50% of the cases. This is reflected in the decreased level of accuracy in the difficult condition 

compared to the base model.  
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3.4 PM-only model 

Our third model adds partial matching instead of spreading activation. The obtained data are 

shown in Figure 7. Again, we observe distinct patterns for accuracy in both conditions. In this 

case, the model achieves a better fit in the difficult condition, particularly after the first 25 trials, 

and maps the learning effect in the human data. For the easy condition, following an initial 

increase, the accuracy stays around 50%. This condition-related pattern reverses the pattern 

observed for the SA-only model.  

Inspecting the visual impression for reaction time reveals an increased mapping in the 

difficult condition, although the model reacts slower than the human participants after the first 

ten trials. In the easy condition, the model reacts faster than the human participants in the first 

ten trials but resides around the same level in subsequent trials. Compared to the human data, 

the interruption effects are less visible in either condition.  

 

 

Figure 7. Accuracy (upper part) and reaction times (lower part) for human and model data for the PM-only model 

in the easy and difficult condition. Reaction times are based only on correct trials. Error bars indicate standard 

errors for human data. Red dashed lines indicate trials after an interruption. 

Referring back to our base model, the PM-only model also accounts for errors of 

commission, as wrong information can be retrieved from memory as well. When retrieving 
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wrong information, the resulting mismatch gets penalized and reduces chunk activation. This 

also relates to longer chunk retrieval times, as observable in the reaction time for the difficult 

condition. In contrast to the easy condition, chunks in the difficult condition contain additional 

information that can potentially result in a mismatch, thus retrieving a wrong chunk in this 

condition is penalized double. This results in the displayed pattern of a better fit in the difficult 

condition, but only around 50% correct reactions in the easy condition with the same parameter 

setting. 

3.5 SA-PM model 

To overcome the shortcomings of both the SA-only and PM-only model, our final model 

combines both spreading activation and partial matching. Figure 8 shows the average model 

performance across the trials for both accuracy and reaction time.  

 

 

Figure 8. Accuracy (upper part) and reaction times (lower part) for human and model data for the SA-PM model 

in the easy and difficult condition. Reaction times are based only on correct trials. Error bars indicate standard 

errors for human data. Red dashed lines indicate trials after an interruption. 

For accuracy, the data indicate that the SA-PM model can map the development in human 

performance quite well in the easy condition, although it achieves a higher performance in the 
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end and shows a subtler reflection of interruption effects. In the difficult condition, our model 

learns slower compared to the easy condition, but still faster than the human participants.  

For reaction times, the visual inspection indicates that the model data can map the initial 

decrease in the difficult condition. In general, it performs slightly slower than human 

participants during most of the trials. In the easy condition, our model shows a subtler decrease 

and faster reactions in the beginning, although, for later trials, its mapping fits quite well. 

Interruption effects are observable in both conditions. 

3.6 Simulated fMRI data 

For the SA-PM model, we further generated predefined ROI-predictions (Borst & Anderson, 

2017) to inspect underlying cognitive resource demands in more detail and link our model 

results to predictions from Whelan (2007). The learners’ motivation was not addressed 

explicitly in the underlying task design, which according to Whelan (2007) determines brain 

areas related to germane cognitive load. Hence, our inspection focused only on the declarative 

and imaginal module, which are connected to working memory (Nijboer et al., 2016). We 

considered them to reflect effects of task complexity as indicator of intrinsic cognitive load. 

Related to resumption trials, they further reflect effects of the embedded interruptions, which 

should induce extraneous cognitive load. 

The ROI-predictions based on the previously outlined mapping of activity in ACT-R 

modules on defined brain regions (see Anderson, 2007; Borst, Nijboer et al., 2015). The 

underlying approach uses the recorded start and end times of module activity to simulate a 

signal comparable to the blood oxygenation level obtainable via fMRI, which shows peaks 

about 4-6 s after the occurrence of neural activity. The activity of each inspected module is 

represented as 0-1 demand function and convolved with a hemodynamic response function 

(e.g., Anderson, 2007; Borst, Taatgen, Stocco, & Van Rijn, 2010; Stocco & Anderson, 2008). 

For example, lower levels of chunk activation in declarative memory would result in longer 

retrieval times, which would then be reflected in increased activity in the dorsolateral prefrontal 

cortex. They would be observable by higher peaks in the simulated fMRI signal. 

Changes in module activity that originate in learning processes are displayed in Figure 9. 

The curves indicate a decrease in cognitive activity in intermediate task stages (displayed in 

red) and later task stages (displayed in black) compared to early task stages (displayed in blue) 

in both conditions in the declarative module (prefrontal cortex). As both input symbols are 

presented one after another, the later retrieval onset in the difficult condition relates to the 

encoding of the second input symbol. Furthermore, the difficult condition shows a higher level 
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of activity across all stages, with a particularly distinctive peak across early task stages. Activity 

in the imaginal module (posterior parietal cortex) exerts a longer duration and shows an 

increased level in the difficult condition across all stages. On closer look, we can relate this 

pattern to the update of the intermediate representation of a symbol combination after the 

second symbol has been shown.   

 

 

Figure 9. Predicted activity in the prefrontal cortex (declarative module) and posterior parietal cortex (imaginal 

module) in early, intermediate, and late temporal stages of the symbol learning task (excluding resumption trials). 

Solid lines represent the easy condition, dashed lines represent the difficult condition. Blue lines represent trials in 

the early task stage (n = 20), red lines represent trials in the intermediate task stage (n = 19), and black lines 

represent trials in the late task stage (n = 20). 

 

 

Figure 10. Predicted activity in the prefrontal cortex (declarative module) and posterior parietal cortex (imaginal 

module) in resumption and non-resumption trials of the learning task. Solid lines represent the easy condition, 

dashed lines represent the difficult condition. Red lines represent resumption trials (n = 5), and black lines represent 

the non-resumption trials (n = 59). 

Comparisons shown in Figure 10 include a separate visualization of the resumption phase, 

defined as the first trial that immediately follows the interrupting task. For the declarative 

module (prefrontal cortex), a higher activity across resumption trials (displayed in red) 

compared to the remainder of trials in the learning task (displayed in blue) results for both 

conditions. On closer look, this pattern reflects the activation decay in the symbol combination 
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chunks during the interruption. In addition, we can observe an earlier onset of retrieval activity 

in the resumption trials in the difficult condition, which relates to the process of restoring the 

previous task goal after being interrupted. The imaginal module (posterior parietal cortex) 

displays a slightly later onset and slightly higher activity across resumption trials, which also 

reflect the outlined task switching costs. 

4 Discussion 
The current model explores cognitive processes and mechanisms that underlie changes in 

performance due to the inserted interruptions and task-related learning processes. Comparing 

model performance across both conditions on a behavioral level, the results obtained from our 

final SA-PM model indicate a reasonable fit in terms of reaction times and accuracy. This model 

can map both the learning-related increase in performance and the decrease in performance due 

to experiencing an interruption. To model the learning effects, we take into account that 

information can be retrieved increasingly faster and more accurate the more often it is used 

(base-level activation). We further consider that people retrieve the wrong symbol combination 

sometimes (partial matching), particularly at the beginning of the learning task. Theoretically 

related to the concept of element interactivity, we also build on the fact that activation is 

distributed across related information elements (spreading activation). We approach the 

interruption effects by including the need to restore the task representation after being 

interrupted. This delays the model’s response to the subsequent learning trial. 

On a neural level, the smaller level of invested cognitive activity with increasing task 

progress emphasizes the prevalence of learning effects in both conditions. Existing content in 

the declarative memory receives increasingly higher activation and can be retrieved faster and 

more accurately. In the difficult condition, invested declarative resources are constantly higher 

across all stages, which by closer inspection relates to the increased influence of partial 

matching. The partial matching mechanism, which penalizes chunk activation and extends 

retrieval times, exerts higher influence as the chunks contain more potentially mismatching 

information. For interruption effects, increased levels of activity in the resumption period arise 

from restoring the previous task representation due to the task switch. It further relates to the 

occurrence of an activation decay in chunks related to the acquired symbol combinations 

(Altmann & Trafton, 2002). 
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4.1 Implications for CLT  

As obvious from the ROI-analysis, our final model needs to invest a higher amount of 

cognitive resources for each retrieval in the early task stage due to the lack of suitable chunks 

and lower levels of chunk activation. The less effortful accessibility of established knowledge 

structures (schemata) with increasing progress in the learning task corresponds to the process-

driven reconceptualization of the Cognitive Load Theory (De Jong, 2010; Seufert, 2018; 

Wirzberger et al., 2018).  

The application of the spreading activation mechanism maps the theoretically introduced 

concept of element interactivity (Chen et al., 2017; Ngu et al., 2018; Sweller & Chandler, 1994; 

Sweller, 2010). It offers the potential for deconstructing and formalizing effects of increased 

task complexity on a cognitive level. For intrinsic cognitive load, Whelan (2007) postulated a 

connection to the prefrontal cortex. Activity in this brain area corresponds well to the observed 

increased activity in the declarative module.  

In addition, Whelan (2007) discussed a relation between extraneous cognitive load and the 

posterior parietal cortex. In the current task design, the embedded interruption task should 

induce the same amount of extraneous cognitive load in both task conditions. However, due to 

the correspondence in the underlying brain region, we might connect the imaginal module to 

extraneous cognitive load. The observed increase in activity in this module in the difficult 

condition suggests that this condition also induced more extraneous cognitive load. It might 

result from presenting the symbols one after another, which raises the necessity of integrating 

the perceptual representations of both input symbols. In line with the split-attention effect 

(Schroeder & Cenkci, 2018), the arising demand to distribute the attention across task-relevant 

sources of information impairs learning. This effect occurs not only related to distributed spatial 

locations but also related to a temporally distributed presentation, which is described in the 

temporal contiguity effect (Ginns, 2006).  

4.2 Future directions  

For the difficult condition, the performance that we observed in our models hints on an 

underlying shift in task-related strategies. Due to the small number of learned symbol 

combinations, over time people might have applied a more heuristic encoding strategy with 

focus on the first symbol. This directly maps the approach of task execution in the easy 

condition. Explaining a potential strategy shift would result in a more complex model on the 

level of production rules and corresponding selection mechanisms. Taking this into account, 



PREPRINT OF ACCEPTED MANUSCRIPT 

 24 

the current modeling approach offers a potential for future work, first by broadening the scope 

of the existing model and second by validating this model with new tasks. 

5 Conclusion 
Taken together, the obtained results emphasize the importance of considering activation-

related dynamics when approaching changes in cognitive resource demands underneath 

performance in learning situations. Our outlined cognitive modeling approach inspects the 

influence of both internal and external factors in these contexts. On the one hand, we modeled 

learning-related change over the task that relates to increasingly faster and less erroneous 

information retrieval. On the other hand, we included the requirement to recreate the previous 

task representation after being interrupted. Since our approach extends beyond human 

experiments and model-based behavior on a neural level, it provides a more detailed 

understanding, which is crucial to exploring related patterns of cognitive resource investment. 

It can be taken as promising step for developing adequate instructional support and minimizing 

harmful effects in learning scenarios.  
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