

How to navigate everyday distractions: Leveraging optimal feedback to train attention control

¹Max Planck Institute for Intelligent Systems Tübingen, Germany | ³LEAD Graduate School & Research Network Tübingen, Germany | ⁴Graduate Training Center for Neuroscience Tübingen, Germany | ⁵Brown University, Rhode Island, United States

Introduction

- Information overload in everyday life diminishes progress toward goals [1]
- Coping ability is moderated by individual attention control skills [2]
- Research on cognitive plasticity suggests that attention control skills can be strengthened by training [3]
- Problem: lack of transferability of existing training paradigms to people's everyday lives [4]
- Solution: training in regular work and study situations with everyday life tasks

Modeling attention control

Exerting attention control in the face of distractions can be formalized as finitehorizon Markov Decision Process (MDP) [5]

$$M = (\{s_f, s_d\}, [0,1], T, r, h).$$

- \succ { s_f , s_d } : focused vs. distracted states
- \succ $c \in [0,1]$: control signal intensities (ranging from 0% to 100%)
- T: probabilities of state transitions depending on control signal intensity
- r : value generated minus cost of control
- \succ h : length of the task in time steps
- Attention control skills can improve through reinforcement learning, which can be accelerated by giving elaborative feedback with metacognitive components [6]

Optimal feedback

Building on Expected Value of Control (EVC) theory [7], optimal feedback can accurately communicate long-term value of staying focused and inhibiting distractions

$$FB(s_t, c_t) = EVC(s_t, c_t) - \max_c EVC(s_t)$$

- \succ Feedback signal takes into account current state s_t and control signal strength c_t
- Communicates the value of invested attention control compared to the value of the best possible attention control signal that a person could have chosen
- \succ Control signal strength c needs to be inferred from people's behavior by Bayesian inference
- Learned Value of Control (LVOC) model [8] predicts that training with optimal feedback improves people's attention control skills

Maria Wirzberger^{1,2,3}, Anastasia Lado^{1,4}, Lisa Eckerstorfer¹, Ivan Oreshnikov¹, Jean-Claude Passy¹, Adrian Stock¹, Amitai Shenhav⁵, Falk Lieder¹

CyberValley

Results

- Higher focus scores resulted with optimal feedback, t(447.75) = 28.12, p < .001, $\xi = .74$
- Focus scores increased over time with optimal feedback, r(775) = .22, t = 6.11, p < .001
- $t(18.35) = 3.84, p = .001, \xi = .82$
- More training sessions were conducted when participants received optimal feedback, t(768.49) = 10.10, p < .001, $\xi = .41$
- Significantly increased productivity was observed during training with optimal feedback (controlled for pre-test differences), F(1, 259) = 9.17, p < .01, f = .19

Discussion

- acquisition of attention control skills
- 53% experimental group)
- design
- achieving their goals more effectively

References

- *Experimental Psychology: General, 143*, 215-226. doi:10.1037/a0030986 [2] Wirzberger, M., & Rey, G. D. (2018). Attention please! Enhanced attention control abilities compensate for instructional
- [3] Karbach, J., & Verhaegen, P. (2014). Making workingmemory work: A meta-analysis of executive controland working memory
- [4] "A Consensus on the Brain Training Industry from the Scientific Community," (2014) Max Planck Institute for Human
- on-thebrain-training-industry-from-the-scientificcommunity-2/.

- cortex function. *Neuron*, 79, 217-240. doi: 10.1016/j.neuron.2013.07.007 *Computational Biology, 14*, e1006043. doi:10.1371/journal.pcbi.1006043

Participants spent longer overall training times when receiving optimal feedback,

Productivity rating: weighted sum of proportional time spent very distracted (-2), distracted (-1), neutral (0), productive (+1) and very productive (+2)

Results support predictions of LVOC model [8] that optimal feedback accelerates

Limitation in rather high and asymmetric attrition rates (41% control group vs.

Feedback might be too intrusive \rightarrow need for more personalized, empathetic

Potential of our approach to support millions of people all around the globe in

impairments in multimedia learning. Journal of Computers in Education, 5, 243-257. doi:10.1007/s40692-018-0106-0

training in younger and olderadults, Psychological Science, 25, 2027-2037.doi:10.1177/0956797614548725

Development and Stanford Center on Longevity. Retrieved on January 13, 2020 from http://longevity.stanford.edu/a-consensus-

[5] Sutton, R. S., & Barto, A. G. (2018). *Reinforcement learning: An introduction* (2nd ed.). Cambridge, MA: The MIT Press. [6] Shute, V. (2008). Focus on formative feedback. *Review of Educational Research, 78*, 153-189. doi:10.3102/0034654307313795 [7] Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an integrative theory of anterior cingulate

[8] Lieder, F., Shenhav, A., Musslick, S., & Griffiths, T. L. (2018). Rational metareasoning and the plasticity of cognitive control. *PLoS*

^[1] Altmann, E. M., Trafton, J. G., & Hambrick, D. Z. (2014). Momentary interruptions can derail the train of thought. Journal of