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Summary 

This thesis addresses ongoing controversies in cognitive load research related to the scope 

and interplay of resource-demanding factors in instructional situations on a temporal 

perspective. In a novel approach, it applies experimental task frameworks from basic cognitive 

research and combines different methods for assessing cognitive load and underlying cognitive 

processes. The first experimental study (N = 96) involves a basal learning task related to 

processes of working memory updating. Distinct facets of cognitive load are manipulated 

simultaneously with reference to the number, distance, and repetition of presented letters. 

Reaction times and errors in updating and recall steps of the task indicate the individual and 

combined influence of the varied features and individual aptitude variables and further 

emphasize the processual nature of schema acquisition. Within the second experimental study 

(N = 116) participants complete an abstract symbol learning task with different levels of task 

complexity according to the number of included elements. At five predefined stages over the 

task, interruptions are induced by an embedded visual search task. From the continuous 

monitoring of performance efficiency, a logarithmically decreasing change of invested 

cognitive resources seems plausible. Divergent effects of the induced interruptions related to 

conditions of task complexity hint on the activation of distinct cognitive strategies. By 

extending these behavioral results with a cognitive modeling approach based on the cognitive 

architecture ACT-R, underlying cognitive processes and mechanisms could be inspected in 

more detail. From the obtained insights, the potential for deconstructing and formalizing effects 

of increased task complexity on a cognitive level emerges. Furthermore, the time-related 

reconsideration of the cognitive load framework receives support on a neural level. The third 

experimental study (N = 123) involves a dual-task setting that requires participants to learn 

visually presented symbol combinations while memorizing auditory presented number 

sequences. Cognitive load during the learning task is addressed by secondary task performance, 

prosodic speech parameters, and physiological markers. In addition, the robustness of the 

acquired schemata is tested by a transfer task that requires participants to apply the obtained 

symbol combinations. The observed pattern of evidence supports the idea of a logarithmically 

decreasing progression of cognitive load with increasing schema acquisition. It further hints on 

robust and stable transfer performance under enhanced transfer demands. Taken together, the 

evidence obtained in this thesis emphasizes a process-related reconceptualization of the existing 

theoretical cognitive load framework and underlines the importance of a multimethod-approach 

to continuous cognitive load assessment. On a practical side, it informs the development of 
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adaptive algorithms and the learner-aligned design of instructional support and thus leverages 

a pathway towards intelligent educational assistants.  
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Zusammenfassung 

Die vorliegende Dissertation nähert sich aktuellen Kontroversen in der Forschung zur 

kognitiven Beanspruchung in Lehr-Lernsituationen im Zusammenhang mit der Abgrenzung 

und dem Zusammenspiel ressourcenbeanspruchender Faktoren unter einer zeitbezogenen 

Perspektive. In einem neuartigen Forschungsansatz werden zu diesem Zweck experimentelle 

Aufgaben aus der kognitiven Grundlagenforschung angewendet und verschiedene Methoden 

zur Erfassung der kognitiven Beanspruchung und der Betrachtung zugrunde liegender 

kognitiver Prozesse kombiniert. Die erste experimentelle Studie (N = 96) beinhaltet eine basale 

Lernaufgabe im Zusammenhang mit Prozessen des Working Memory Updating. Definierte 

Facetten der kognitiven Beanspruchung werden simultan anhand der Anzahl, dem Abstand und 

der Wiederholung präsentierter Buchstaben manipuliert. Reaktionszeiten und Fehler in 

Updateschritten und finaler Wiedergabe im Zuge der Aufgabe zeigen den individuellen und 

kombinierten Einfluss der variierten Merkmale und individueller Charakteristika der Lernenden 

und unterstreichen zusätzlich den prozessualen Charakter des Schemaerwerbs. In der zweiten 

experimentellen Studie (N = 116) absolvieren die Teilnehmenden eine abstrakte 

Symbollernaufgabe mit unterschiedlichen Komplexitätsstufen, die durch die Anzahl der 

enthaltenen Elemente determiniert werden. Zu fünf vordefinierten Zeitpunkten im 

Aufgabenverlauf erfolgen Unterbrechungen durch eine eingebettete visuelle Suchaufgabe. Auf 

Basis der kontinuierlichen Erfassung der Leistungseffizienz erscheint eine logarithmisch 

abnehmende Veränderung der investierten kognitiven Ressourcen plausibel. Unterschiedliche 

Effekte der induzierten Unterbrechungen in den Bedingungen der Aufgabenkomplexität deuten 

auf die Aktivierung unterschiedlicher kognitiver Strategien hin. Mit der Erweiterung der 

verhaltensbezogenen Befunde um einen kognitiven Modellierungsansatz, basierend auf der 

kognitiven Architektur ACT-R, können die zugrunde liegenden kognitiven Prozesse und 

Mechanismen genauer untersucht werden. Die gewonnenen Erkenntnisse bieten das Potenzial 

zur Dekonstruktion und Formalisierung von Effekten erhöhter Aufgabenkomplexität auf 

kognitiver Ebene. Gleichzeitig stützen diese eine zeitbezogene Neubetrachtung des 

Rahmenmodells kognitiver Beanspruchung auf neuronaler Ebene. Die dritte experimentelle 

Studie (N = 123) nutzt einen Dual-Task-Ansatz, bei dem die Teilnehmenden visuell präsentierte 

Symbolkombinationen lernen, während sie sich gleichzeitig auditiv präsentierte Zahlenreihen 

merken sollen. Die kognitive Beanspruchung während der Lernaufgabe wird durch die 

Sekundäraufgabenleistung, prosodische Sprachparameter und physiologische Marker erfasst. 

Darüber hinaus wird die Robustheit der erworbenen Schemata durch eine Transferaufgabe 

geprüft, welche die Anwendung der zuvor erlernten Symbolkombinationen erfordert. Das 
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resultierende Evidenzmuster stützt die Idee eines logarithmisch abnehmenden Verlaufs der 

kognitiven Beanspruchung mit zunehmendem Schemaerwerb und deutet auf eine robuste und 

stabile Transferleistung auch unter erhöhten Aufgabenanforderungen hin. Zusammenfassend 

betonen die in der vorliegenden Dissertation gewonnenen Erkenntnisse eine prozessgeleitete 

Rekonzeptualisierung des bestehenden theoretischen Rahmenmodells der kognitiven 

Beanspruchung und unterstreichen zusätzlich die Bedeutung eines multimethodischen Ansatzes 

zur kontinuierlichen Erfassung der kognitiven Beanspruchung. Auf praktischer Seite lassen sich 

zentrale Hinweise für die Entwicklung adaptiver Algorithmen sowie eine an den Lernenden 

orientierte Gestaltung instruktionaler Prozesse ableiten, welche den Weg zu intelligenten Lehr-

Lernsystemen eröffnen.  
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Synopsis 

1 Introduction 

1.1 Practical significance 
Recent advances in computer-based technology offer the potential to explore innovative 

solutions in learning and training contexts. The arising scope relates to various benefits from 

both the educating and the educated perspective – given that emerging challenges are 

considered in a sufficient way. When designing intelligent educational systems, the most 

important goal persists in providing each learner the opportunity to achieve the best possible 

learning outcome with appropriate effort. A sophisticated approach to enhanced cognitive skill 

acquisition can be achieved by tailoring instructional support to individual learners’ needs, 

which also increases motivation and encourages sustained performance. For instance, during 

learning activities, an adaptive system could align the amount and speed of the presented 

content or the degree and scope of instructional feedback. At the same time, learners’ cognitive 

resources should not be overloaded due to the variety of occupied modalities and provided 

interactive features. In consequence, for providing adequate feedback, such systems need 

sufficient input related to both performance and cognitive resource supply. While performance 

can be inspected via tracking learners’ task-related progress, the actual pattern of invested 

cognitive resources needs to be derived from an enhanced scope of learner-related information. 

These can result from including additional channels, such as behavior or psychophysiological 

signals, as well as supporting evidence by computational models on task-related cognitive 

processes. Arising challenges in the development of adaptive educational systems firstly 

involve issues of adequate assessment. They address the accurate learner state recognition that 

requires intelligent algorithms for correctly interpreting the acquired signals. Secondly, system 

behavior needs to be adjusted continuously to meet learners’ needs as sophisticated as possible. 

Motivated by both issues, this thesis explores the pattern of cognitive resource investment 

related to task performance by monitoring variations in cognitive demands over the task with a 

novel combination of sensitive measures related to performance, speech, physiological 

reactions, and computational cognitive modeling. On this account, it contributes evidence 

relevant to developing dynamic recognition algorithms underneath intelligent educational 

technologies.  
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1.2 Theoretical background 
Approaching the subject on a theoretical level, instruction-related cognitive demands need 

to be considered and monitored carefully. A well-established theory in this field is the Cognitive 

Load Theory (Sweller, Ayres, & Kalyuga, 2011; Sweller, Van Merrienboër, & Paas, 1998), 

which addresses the construct of cognitive load in terms of working memory resources required 

to perform a certain task in a given situational context (Kalyuga & Plass, 2018). These demands 

relate to the ergonomic concept of strain (Beckmann, 2010; Kalyuga, 2011; Manzey, 1998), as 

they constitute a subjective experience that each individual learner has to cope with.  The theory 

looks back on a history of about 30 years of active research with broad impact on conducive 

instructional design in a variety of domains. Upon its core assumptions, it resides on vested 

models of memory (Anderson, 1983; Atkinson & Shiffrin, 1971; Baddeley, 1992) that indicate 

limited working memory resources in terms of both duration and capacity of stored information. 

Besides a temporal duration of 20 to 30 s (e.g., Wickens, Hollands, Banbury, & Parasuraman, 

2013), according to more recent research, the number of simultaneously available elements 

would reside around four (Cowan, 2010). By contrast, long-term memory resources provide 

nearly infinite storage capacity and duration and thus can be used to establish permanent 

knowledge structures. According to Schweppe and Rummer (2014), both memory systems are 

strongly interconnected, as working memory resources represent the activated part of long-term 

memory that holds the attentional focus. In line with evidence from schema theory (Anderson, 

1983), the emerging organized knowledge structures are described as schemata that involve 

both declarative and procedural components (Gagné & Dick, 1983). Existing schemata 

influence how learners manage certain learning content and can be modified with new 

knowledge. In a recent review summarizing the evidence on schemata, Gosh, and Gilboa (2014) 

describe associative network structures, the foundation in multiple episodes, a lack of unit 

detail, and adaptability as core characteristics of the schema concept. With reference to 

established models of learning and skill acquisition (Anderson, 1982; Fitts & Posner, 1967; 

Ebbinghaus, 1964) higher amounts of resource investment are plausible in earlier process stages 

when knowledge structures still have to be established. The initially declarative knowledge 

becomes increasingly procedural and automated with task progression and in consequence, 

demands less cognitive resources.  

Since its first description in the 1980s, the Cognitive Load Theory underwent several stages 

of refinement in terms of the postulated facets of cognitive load in learning situations. In the 

beginning, it focused on the prevention of harmful effects from task-irrelevant aspects, referred 

to as extraneous cognitive load (Sweller, 1988). This kind of resource demands arises from an 
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inappropriate instructional presentation, for instance, due to inherent demands to split the 

attention between relevant sources of information (Ginns, 2006; Schroeder & Cenkci, 2018). 

On a broader level, it further involves interfering situational aspects of the learning context such 

as the prevalence of competing goals (Gerjets, Scheiter, & Schorr, 2003) by additional or 

interrupting tasks. The next stage of development expanded the focus on a load-inducing facet 

relevant to the learning task: the complexity of the used learning material in relation to existing 

previous knowledge (Sweller & Chandler, 1994). Along with defining this facet as intrinsic 

cognitive load, the concept of element interactivity was introduced, which emphasizes the 

interrelation of information elements as source of complexity (Chen, Kalyuga, & Sweller, 2017; 

Ngu, Phan, Yeung, & Chung, 2018). Characteristically, changes in element interactivity are 

related to the nature of what is learned (Sweller, 2010) and its amount should be kept at a 

manageable level for the individual learner to foster optimal learning outcomes. On this 

account, intrinsic cognitive load offers a toehold for adaptive learning procedures tailored to 

learners’ expertise. A step ahead, in addition to extraneous and intrinsic cognitive load, a further 

source of cognitive load with beneficial effects for learning was introduced, primarily on 

theory-based accounts to explain so far unexplainable patterns of evidence (Paas, Tuivonen, 

Tabbers, & Van Gerven, 2003; Sweller et al., 1998). This so-called germane cognitive load 

emerges from learning-related processes of schema acquisition and automation and operates 

under the assumption of highly motivated learners that devote all available resources to these 

processes. Extraneous, intrinsic, and germane cognitive load were assumed to contribute 

independently and additively to overall cognitive resource demands in learning contexts 

(Sweller et al., 1998). This triarchic model of cognitive load can further be connected to the 

Cognitive Theory of Multimedia Learning (Mayer, 2009), another influential explanatory 

framework in instructional design. Although there is no exact mapping, essential cognitive 

processing relates to intrinsic cognitive load, as it deals with the selection and representation of 

relevant learning material in working memory. Extraneous cognitive processing is caused by 

suboptimal instructions, reminding of extraneous cognitive load, while generative cognitive 

processing corresponds to germane cognitive load by an active organization and integration of 

learning contents as well as learners’ level of motivation (Kalyuga, 2011; Mayer, 2009). 

Although the outlined facets have been broadly discussed in the corresponding literature, 

issues regarding the proper empirical assessment and psychometric separation persist. Such 

raise doubts on the originally postulated assumption of their purely additive interplay, as well 

as the independence of the later introduced germane cognitive load facet. To address the arising 

concerns, suggestions emerged to reformulate germane cognitive load as germane resources 
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invested to deal with task-relevant intrinsic cognitive load (Kalyuga, 2011; Sweller, 2010, 

2018) contrary to extraneous resources to deal with task-irrelevant extraneous cognitive load. 

Kalyuga and Singh (2016) argue even more towards a strict re-reduction of the framework into 

a two-component model that merely differentiates facilitative (productive) and impairing 

(unproductive) cognitive load factors and completely subsumes germane cognitive load under 

the facet of intrinsic cognitive load. By contrast, Seufert (2018) emphasizes the reasonability to 

retain the separation of intrinsic and germane cognitive load when considering aspects of self-

regulation. In this context, both intrinsic and extraneous cognitive load facets represent task 

affordances imposed by the learning material, whereas germane cognitive load refers to learner-

based decisions. She further criticizes the mainly static and deterministic perspective on 

cognitive load and clearly outlines the benefits of a more dynamic view on changes in cognitive 

load during learning. Following de Jong (2010), the separate consideration of the facets of 

intrinsic and germane cognitive load receives further confirmation as both represent distinct 

ontological categories. Whereas intrinsic cognitive load is related to the static complexity of 

the presented material, germane cognitive load refers to dynamic cognitive processes. Galy, 

Cariou, and Melan (2012) also outline the asymmetric nature of these facets that are supposed 

to act on different components of the cognitive system. According to Schnotz and Kürschner 

(2007), decreasing levels of cognitive load with increasing expertise are indeed plausible, which 

further advocates to adopt a process perspective on cognitive load, as claimed by Beckmann 

(2010). 

Taken together, the existing literature reveals the lack of a time-related perspective in 

instructional cognitive load research. Such drives the demand of a processual 

reconceptualization of the three-component model that quantifies temporal changes resulting 

from schema-acquisition across the task. Based on this position, as documented in Wirzberger, 

Beege, Schneider, Nebel, and Rey (2016), Wirzberger, Esmaeili Bijarsari, and Rey (2017), and 

Wirzberger, Herms, Esmaeili Bijarsari, Eibl, and Rey (2018), the current thesis follows distinct 

levels of inspection of the outlined cognitive load facets with focus on their interplay during the 

learning process. Inspired by the concept of the zone of proximal development (Vygotski, 

1963), the goal of intelligent adaptive systems would then be to keep the resulting cognitive 

load pattern at a manageable level for each learner at all stages.  

1.3 Cognitive load assessment 
According to Sweller (2018), the Cognitive Load Theory has originally been developed as a 

theoretical construct to explain experimentally obtained results, with little attempt to actually 
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measure cognitive load. Nevertheless, since its initial description a variety of cognitive load 

measures has emerged (Paas et al., 2003; Sweller et al., 2011; Zheng, 2018). They operate on 

various parameters that can be categorized into subjective ratings, performance measures, 

physiological markers, and behavioral indices. Following Chen et al. (2016), while performance 

measures directly reflect task-related outcomes, behavioral indices hold information that does 

not directly affect domain-based outcomes. Contrary to physiological markers, the occurrence 

of behavioral indices can mostly or entirely be controlled by the learner. Related to arising 

differences in learners’ evaluation of the complexity of the presented content and the benefit of 

the provided instructional support with increasing schema acquisition (Martin, 2018; Schnotz 

& Kürschner, 2007), a continuous monitoring of cognitive resource demands is advisable, 

which constitutes a core focus of the current thesis. An overview of the cognitive load indicators 

used in the related experimental studies is provided in Table 1.  

Table 1 

Cognitive load measures applied by the experimental studies in the included articles 

Study Subjective ratings Performance Physiology Behavior 

1 Paas (1992) 
Reaction times 

Error rates 
- - 

2 Krell (2015) Efficiency 

Interruptions 
- - 

3 Leppink et al. (2013) Efficiency 

Secondary task 
HR, SCR Prosody 

Note. Efficiency = correct responses per second, HR = heart rate, SCR = skin conductance response, Prosody = 

number and duration of silent pauses, phoneme-based articulation rate. 

Amongst the earliest attempts to provide insights into cognitive demands arising from 

learning situations, subjective rating scales comprise a broadly used instrument. In particular, 

the unidimensional mental effort scale by Paas (1992) offers a convenient and easily usable 

option, although its informative value as single rating is limited. It requires participants to rate 

their perceived mental effort on a nine-point Likert scale ranging from “very, very low” to 

“very, very high”. Kalyuga, Chandler, and Sweller (1999) use a modified scale to assess 

subjective mental load with a rating of instructional difficulty on a seven-point Likert scale 

ranging from “extremely easy” to “extremely difficult”. In line with this procedure, Wirzberger 

et al. (2016) applied the mental effort scale accompanied by a rating on estimated task difficulty 

to enhance the scope of the stated predications. A more differentiated questionnaire that aims 
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at assessing experienced mental load and mental effort is provided by Krell (2015). While 

mental load refers to cognitive demands arising from task-related and situational characteristics, 

mental effort refers to cognitive capacity invested in dealing with them. The questionnaire 

involves six items for each mental load (e.g., “The tasks were difficult to answer.”) and mental 

effort (e.g., “I have made an effort at the processing of the tasks.”) that have to be rated on a 

seven-point Likert scale from “not at all (1)” to “moderately (4)” and “totally (7)”. It was used 

by Wirzberger, Esmaeili Bijarsari, et al. (2017) to obtain additional insights in invested 

cognitive resources across conditions. Contrary to the previously reported ratings, the 

questionnaire developed by Leppink, Paas, Van der Vleuten, Van Gog, and Van Merriënboer 

(2013) addresses the facets of intrinsic, extraneous, and germane cognitive load separately. It 

includes three questions on each intrinsic and extraneous cognitive load and four questions 

referring to germane cognitive load. The first two categories are closely connected to the 

underlying conceptual definitions by tapping either the complexity of the topic to be learned or 

the clarity of the instructional explanations (Ayres, 2018). In terms of the latter category, the 

related questions focus on understanding and knowledge acquisition, which turned out to be a 

rather controversial issue due to the lack of meaningful results in some studies (e.g., Leppink, 

Paas, Van Gog, Van der Vleuten, & Van Merriënboer, 2014). The reversed effect pattern for 

the germane cognitive load facet reported by Wirzberger et al. (2018), who also applied this 

questionnaire, further supports this critique. Leppink et al. (2014) discuss the related difficulties 

with reference to the already outlined re-reduced two-factorial cognitive load model. A more 

recent questionnaire by Klepsch, Schmitz, and Seufert (2017) addresses this issue by including 

the effort component more explicitly in questions related to germane cognitive load. The 

authors still emphasize the value of the three-factor model of cognitive load facets from a 

measurement point of view and state a more general applicability of their questionnaire across 

a wider range of educational subjects and domains. 

Cognitive resource demands are further reflected in a more indirect way in performance-

related parameters such as reaction times, error rates, and accuracy. These measures have a 

broad application and long history of use across a variety of psychological fields and 

disciplines. According to relevant literature from instructional cognitive load research 

(Hoffman & Schraw, 2010; Paas & Van Gogh, 2006) opposed to single accuracy or reaction 

time measures, a combined metric can be used as indicator for the quality of acquired cognitive 

schemata and thus offers a higher indicative value. Hoffmann and Schraw (2010) compare 

different approaches for calculating efficiency scores from both performance and effort 

indicators and outline the dependency of the chosen measure on the nature of the research 
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question and the construct of interest. On this account, Wirzberger, Esmaeili Bijarsari, et al. 

(2017) and Wirzberger et al. (2018) applied an efficiency measure calculated from correct 

responses and reaction times according to the likelihood model, to obtain insights in changes 

across the process of schema acquisition. On methodological accounts, secondary tasks 

constitute a sophisticated way to shed light on task-related cognitive resource demands. They 

operate on the rationale that changes in working memory load related to a primary task can be 

monitored by a secondary task (Sweller, 2018; Kraiger, Ford, & Salas, 1993) and have already 

been proven reliability and validity in cognitive load assessment (e.g., Korbach, Brünken, & 

Park, 2017; Park & Brünken, 2018). This measurement approach is inspired by existing dual-

task paradigms that apply a variety of tasks ranging from counting or reciting the alphabet to 

finger tapping, and humming a melody (e.g., D’Espositio, Onishi, Thompson, Robinson, 

Armstrong, & Grossman, 1996). Already applied secondary tasks in learning contexts include 

the observation of changes in auditory or visual stimuli (Brünken, Plass, & Leutner, 2004; 

Brünken, Steinbacher, Plass, & Leutner, 2002), requirements to memorize additional content 

(Renkl, Gruber, Weber, Lerche, & Schweizer, 2003; Wirzberger et al., 2018), the classification 

of auditory stimuli while performing a motor learning task (Esmaeili Bijarsari, Wirzberger, & 

Rey, 2017), or the performance of motor tasks such as tapping a previously learned rhythm by 

foot (Park & Brünken, 2015). However, choosing an appropriate secondary task that neither 

interferes with primary task requirements nor lacks sensitivity to observe arising demands still 

comprises a challenge when applying such task procedure continuously.  

Increased cognitive demands also affect physiological states such heart rate, skin 

conductance, or brain blood flow dynamics. Due to the related characteristic of continuous 

assessment, they are particularly suited to obtain temporal progression patterns (Zheng & 

Greenberg, 2018). Amongst the variety of parameters and techniques, Wirzberger et al. (2018) 

recorded participants’ mean normalized skin conductance response, indicating changes in the 

sympathetic nervous system (Chen, Zhou, & Yu, 2018), and heart rate, accompanying cognitive 

processing demands (Kennedy & Scholey, 2000). These measures have already proven 

sensitivity in related research (Chen et al., 2018) and point towards higher demands on cognitive 

resources by increasing values. However, they provide only an overall evaluation of the 

prevalent cognitive load level, without specifying different facets. A sophisticated conceptual 

approach to obtain information on individual cognitive load facets on a neural level was 

postulated by Whelan (2007). It aligns to existing evidence from functional neuroimaging 

literature that builds around the measurement of peaks in the blood oxygen level due to neuronal 

activity. Based on this rationale, he suggests that extraneous cognitive load would correspond 
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in particular to activity in brain regions responsible for sensory processing, such as the posterior 

parietal association cortex, Broca’s area, and Wernicke’s area. By contrast, the intrinsic 

cognitive load component should be associated with activity in brain regions involved in 

maintaining and manipulating the attentional focus, in particular, the dorsolateral prefrontal 

cortex. Finally, germane cognitive load is assumed to hold connections to activity in brain 

regions related to motivation, as highly motivated learners are more likely to devote available 

cognitive resources solely to processes and strategies of schema acquisition. Corresponding 

brain regions, in this case, involve the superior frontal sulcus and the intraparietal sulcus. 

Although this approach offers high explanatory potential, so far it has not been explicitly tested 

yet due to the high methodological effort and inherent task-related constraints. 

In terms of behavioral responses, duration-based parameters from speech signals have 

proven sensitivity to changing levels of cognitive load (Chen et al., 2016). They can be 

classified as behavioral, since they show inherent characteristics such as disfluency, articulation 

rate, content quality, the number of syllables, and the number and duration of pauses regardless 

of the meaning of the utterance. Existing evidence indicates that increasing levels of cognitive 

load result in a slower speech tempo as well as more and longer pauses within the speech flow 

due to necessary planning processes (e.g., Müller, Großmann-Hutter, Jameson, Rummer, & 

Wittig, 2001). Contrary to existing work that applied speech parameters to capture fixed task 

demands across shorter time spans (e.g., Yap, 2012), Wirzberger et al. (2018) inspected the 

phoneme-based features articulation rate, number of silent pauses, and duration of silent pauses 

with references to task-inherent processual changes during schema acquisition. Related work 

extended the focus by additional parameters and further applied the acoustic-prosodic features 

loudness and pitch, and the voice quality features vocal fold frequency and voice amplitude 

(Herms, 2018; Herms, Wirzberger, Eibl, & Rey, 2018). A comparison of discrete classes of 

low, medium, and high levels of cognitive load showed statistically significant differences for 

articulation rate, pause duration, pitch, and voice quality features. The latter indicate less rough 

or hoarse characteristics of the speech signal with increasing levels of cognitive load.  

Considering the outlined characteristics, Korbach et al. (2017) already demonstrated the 

benefit of combining measures related to behavior and secondary task performance to achieve 

a continuous cognitive load assessment. Further accounting for the fact that a single measure 

alone is not sufficient to obtain the underlying pattern of cognitive resource investment in 

learning situations, Chen et al. (2018) emphasize an even more comprehensive approach on 

cognitive load assessment. They introduce a multimodal framework that fuses a variety of 

cognitive load-indicating channels of continuous learner-related information, for instance, 
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physiological signals from skin conductance and electroencephalography and behavioral data 

streams from speech, gaze patterns, and mouse and keyboard interactions.  

1.4 Research focus 
The current thesis addresses ongoing controversies in instructional cognitive load research 

by examining the processes and mechanisms of the interplay between the outlined cognitive 

load facets. Corresponding to a process-related reconceptualization of the existing three-

component model that takes into account temporal changes in resources related to schema 

acquisition across the task, it applies a combination of continuous approaches for cognitive load 

assessment. The resulting evidence should provide a foundation for the development of 

adaptive instructional procedures with learner-aligned instructional support. Considering this 

background, fading instructional guidance then can tie in with both the level of expertise, 

reflected in current performance, but also the level of invested cognitive resources, detectable 

by capturing learners’ cognitive load. The inclusion of context-related features has further 

indicative value, for instance, due to a facilitative use of interruptions to keep learners involved 

in the task. 

2 Experimental studies 

On methodological accounts, the novelty of this thesis consists in applying experimental task 

frameworks from basic cognitive research to inspect the interplay of cognitive load facets in a 

controlled, internally valid manner. Due to the demonstrated impact of prior knowledge on task 

performance and cognitive resource demands (e.g., Chen et al., 2017; Rey & Buchwald, 2011; 

Rey & Fischer, 2013; Seufert, 2018), tasks with no or commonly shared prior knowledge were 

chosen to keep the arising influences at a constant level. A related joint characteristic of the 

reported studies constitutes the a priori determination of task complexity according to the 

number of interacting elements of information (Beckmann, 2010; Chen et al., 2017; Ngu et al., 

2018; Sweller & Chandler, 1994). As a particular focus was put on the inspection of the learning 

process, a set of continuous measures was applied. Whereas data in the first and second study 

were collected in group-based settings, the third study used individual testing sessions due to 

the nature of the recorded measures. Table 2 provides an overview of sample characteristics 

across the included studies and Table 3 outlines details of the underlying research designs.   
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Table 2 

Sample characteristics of the experimental studies reported in the included articles 

Study N M a SD a Range a Gender b           

1 96 24.35 4.81 18-48 79.17 

2 116 23.25 4.34 18-44 80.17 

3 123 22.67 3.55 18-34 76.42 

Note. a Age in years. b Percentage of female participants. 

2.1 Methods 
A main characteristic of the first experimental study (Wirzberger et al., 2016) comprised the 

investigation of the previously discussed facets of cognitive load in a joint task framework. The 

adopted paradigm of working memory updating (Ecker, Oberauer, Lewandowsky, & Chee, 

2010) can be regarded as condensation of learning-relevant working memory processes, as 

content-related changes need to be represented correctly over time. In such tasks, an initially 

presented input undergoes several steps of updating, which involve processes of retrieval, 

transformation, and substitution that are reflected as well in a more implicit manner in the 

concluding recall of the final state.  Aligned to Ecker et al. (2010), the presently employed task 

was formed of letter sets and accompanying alphabetic transformations over three (practice 

phase) or six (test phase) steps. Participants received a new set of letters at the outset of a trial 

that had to be incremented at one of the positions within each updating step and memorized 

afterward. As displayed in Table 3, facets of intrinsic, extraneous, and germane cognitive load 

were addressed by controlled, task-inherent variations (Beckmann, 2010) in a 3 x 2 x 2 within-

subjects design: Firstly, the number of letters to be memorized simultaneously determined task 

complexity and resulted from adding or removing one letter around the intermediate difficulty 

of three letters (Ecker et al., 2010). Secondly, an increased distance between presented letters 

aligned to the split attention effect (Ginns, 2006; Schroeder & Cenkci, 2018) as means of 

inappropriate instructional presentation. Thirdly, the repetition of letter sets from a previous 

training sequence enabled the use of already existing task-related schemata. As individual 

aptitude variables are known to play an important role in such tasks, the standardized 

psychological inventory d2-R (Brickenkamp, Schmidt-Atzert, & Liepmann, 2010) provided 

insights into participants' concentration abilities. Due to the recording of error rates (corrected 

for inherited errors) and reaction times in both update steps and final recall as dependent 
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variables, a verifying feedback (Shute, 2008) on the percentage of correct responses could be 

provided after completing the task. 

Table 3 

Study designs of the experimental studies reported in the included articles 

Study Trials 
Session 

duration 
Material ICL ECL GCL 

1 6 a / 24 b 45 min 

d2-R 

Letter 

sequences 

Number of 

letters (2/3/4) 

Increased 

distance of 

letters c 

Repetition of 

letter sets c 

2 64 d 60 min 

OSPAN e 

SSPAN e 

 Symbol 

sequences 

Number of 

symbols (2/3) 

Interrupting 

visual search 

task 

Performance 

efficiency 

(cr/rt*1000) 

3 64 d / 60 f 60 min 

OSPAN

Symbol 

sequences g 

Number of 

symbols (3/4) 

Embedded 

secondary task 

Performance 

efficiency 

(cr/rt*1000) 

Notes. ICL = intrinsic cognitive load, ECL = extraneous cognitive load, GCL = germane cognitive load.          
a Practice phase, b Test phase, c With vs. without, d Learning task, e Short versions, f Transfer task, g An additional 

classification task applied symbol sequences with distortions to assess transfer demands. 

In the subsequent second experimental study (Wirzberger, Esmaeili Bijarsari, et al., 2017), 

the focus was shifted towards the processual nature of schema acquisition. The task further 

addressed the issue of potentially occurring interferences of prior knowledge from the previous 

letter stimuli and used more abstract material to inspect the temporal interplay of cognitive load 

facets. In more detail, participants had to learn abstract geometric symbol combinations via trial 

and error by verifying feedback (Shute, 2008) that informed about the correctness of the 

response and the correct response in terms of errors. In line with the first study, the number of 

symbols in a defined order that formed a combination represented task complexity as between-

subjects independent variable. Under the assumption that the prevalence of distracting tasks 

with competing goals (Gerjets et al., 2003) represents a common situational constraint in 

computer-based learning environments, interruptions were induced at five defined stages over 

the task as further within-subjects independent variable. The emerging effects on performance 

should further hint on the underlying progress in schema acquisition. Following Wickens 
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(2002), a resource-demanding perceptual task would be able to cause substantial interference 

with a cognitive task that involves storage and/or transformation processes in working memory. 

On this account, the interrupting task itself adopted a visual search paradigm with a sufficient 

number of geometric symbols similar to the learning task (Trick, 2008), as similarity (Gillie & 

Broadbent, 1989) and an appropriate task duration (Monk, Trafton, & Boehm-Davis, 2008) 

should ensure the interrupting potential. To assess the investment of cognitive resources related 

to schema acquisition in the resulting 2 x 5-factorial mixed design, performance efficiency 

computed from reaction times and correct responses (Hoffman & Schraw, 2010), was inspected 

as dependent variable. Participants working memory span (Unsworth, Heitz, Schrock, & Engle, 

2005) and perceived mental load and mental effort (Krell, 2015) were obtained before the 

learning task, whereas the amount of recalled symbol combinations was recorded afterward. 

The third experimental study (Wirzberger et al., 2018) extended the abstract visual-motor 

symbol sequence learning task used in the second study by an embedded auditory-verbal 

secondary task to enable a closer monitoring of the investment of cognitive resources related to 

schema acquisition. Distinct input and output modalities were chosen to ensure the occurrence 

of resource interference merely at a cognitive stage due to the simultaneous processing of task 

requirements (Wickens, 2002, 2008). The constant interchange of both tasks over time was 

inspired by the procedure of automated complex working memory span tasks (Redick et al., 

2012; Unsworth et al., 2005), which are characterized by the alternating sequence of distractor 

and target tasks. While the primary task slightly adjusted the task paradigm by Wirzberger, 

Esmaeili Bijarsari, et al. (2017) in terms of both number and presentation of symbols, the 

secondary task required participants to memorize and recall a spoken five-digit sequence from 

start to finish of each trial. Again, task complexity in the primary task varied according to the 

interrelated number of symbols. In addition to performance parameters from primary and 

secondary tasks, inspected via combined efficiency measures (Hoffman & Schraw, 2010), 

cognitive load-related parameters from prosodic speech features and physiological parameters 

were recorded. Particularly the inspection of varying levels of cognitive load in speech-related 

characteristics, such as the number and duration of pauses and the articulation rate, comprises 

a novel and innovative solution in cognitive load research (Herms et al., 2018). Accompanied 

by more established physiological markers of skin conductance response and heart rate, the 

study provided an elaborated pattern of multimodal indicators for cognitive load. Beyond a 

subsequent recall of memorized symbol combinations, a specifically designed transfer task 

aimed at obtaining the robustness of the acquired schemata. Based on the set of previously 

learned symbol combinations, it required participants to categorize displayed symbol 
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combinations in terms of their correctness. The task operated on a 2 x 5 factorial mixed design 

that aligned with the aforementioned between-subjects variation of task complexity due to the 

number of symbols. In addition, defined levels of distortion of the presented symbols induced 

increased transfer demands that were inspected in terms of errors (corrected for inherited errors) 

and reaction times. Again, participants’ individual working memory capacity was controlled 

for by completing a working memory span task (Unsworth et al., 2005) before the learning task. 

2.2 Results 
Responding to the request of Martin (2018) to apply more complex statistical models to 

represent the factor time in cognitive load assessment, data analysis across the included 

experimental studies is characterized by advanced statistical approaches (see Table 4). The 

resulting continuous inspection of learner states further corresponds to Leppink and Van 

Merrienboër (2015), who advise against the aggregation of repeated measures due to the 

resulting loss in informative value about individual task-related progressions. 

Figure 1. Complexity-related differences in reaction times and errors in both update and final recall stages. Error 

bars indicate standard errors. 

In the first experimental study, results displayed a constant increase in both error rates and 

reaction times with increasing complexity, as shown in Figure 1. The visual impression 

suggests that participants reacted slower during the update steps but made more errors during 

the final recall. A significant increase in reaction times, but not error rates, with increased 

distance between stimuli resulted and the pattern of effects further indicated a benefit of 

repeated letter sets in terms of error rates and reaction times. In addition, significant two- and 

three-way-interactions between the examined facets showed up. Besides the beneficial 
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influence of higher individual levels of concentration, task-related progress also fostered an 

overall increase in performance. 

Table 4 

Characteristics of data analysis in the experimental studies reported in the included articles 

Study 
Participants 

included 
Statistical approach Main outcomes 

1 92 Linear mixed effects model a 

Significant main effects and 

interactions 

Significant influence of aptitude       

and control variables 

2 113 

Conditional growth curve model a 

ANCOVA a, b 

t-Test

Superiority of logarithmic 

progression model 

Differences in interruption

effects across conditions 

3 103 c 

Conditional growth curve model a 

Time series regression d 

ANOVA  

t-Test

Increasing performance under 

decreasing levels of cognitive load 

Robust transfer performance even 

under increased task demands 

Notes. a Accounting for interindividual variance by inclusion of random intercept, b Based on linear mixed effects 

model, c Further exclusions required for secondary task performance (n = 102), speech parameters (n = 102), and 

physiological parameters (n = 101), d Accounting for interindividual variance by normalization on individual 

baseline.  

Inspired by temporal models of learning and skill acquisition (Anderson, 1982; Ebbinghaus, 

1964; Fitts & Posner, 1967), plausible linear, quadratic and logarithmic progressions were 

compared statistically in the second experimental study. The obtained results revealed a 

nonlinear increasing development of performance efficiency over time that differed between 

both conditions of task complexity, with superiority for the logarithmic model. In addition, 

condition differences arose with respect to the impairing influence of the induced interruptions, 

as a loss in performance was more obvious in the easy task condition. No differences in 

performance efficiency between easy and difficult task conditions resulted in the interrupting 

task. In addition, the amount of correctly recalled symbol combinations after completing the 

learning task was comparable between both conditions. 
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The pattern of evidence in the third experimental study indicated an increase in performance 

efficiency over time for both primary and secondary tasks. Performance benefits for the easy 

task condition were also supported by more correctly recalled symbol combinations after the 

learning task. In line with evidence from the second study, analyses of continuously recorded 

parameters were based on logarithmic progression models. Speech-related parameters pointed 

towards reduced levels of cognitive load with increasing task progress, as the number and mean 

duration of pauses decreased, and articulation rates increased. In a similar way, physiological 

parameters displayed decreasing progressions and furthermore showed a repetitive seasonal 

pattern across subtasks with increases in secondary task-related steps. Results obtained from 

the transfer task hint on robust and stable performance even under enhanced task demands due 

to distorted symbols. Reaction times were significantly increased, but generally faster under 

difficult task conditions. 

2.3 Implications 
Taken together, the pattern of evidence arising from the outlined experimental studies 

supports a process-related refinement of the theoretical framework of cognitive load, 

considering ICL and ECL on a structural and GCL on a processual level. Such also relates to 

the recently introduced reformulation of GCL as resources dealing with relevant aspects of a 

learning task (ICL) contrary to independent additivity (Sweller, 2018). On practical accounts, 

the obtained results provide the basis for developing multimodal models of cognitive load 

progression as algorithmic base for adaptive instructional support according to learners’ 

individual cognitive resource supply.  

Examining the results of the first experimental study in more detail, the prevalence of 

significant interactions supports existing doubts on the assumption of a purely additive 

relationship between the described cognitive load facets (Kalyuga, 2011; Sweller, 2018). In 

extension, the overall improvement in performance across the task emphasizes both the 

declarative and procedural nature of task-related schemata (Gagnè & Dick, 1983). The 

significant influence of increased concentration resources aligns with existing evidence on 

individual aptitude variables (e.g., Wirzberger & Rey, 2018) and emphasizes the importance of 

considering individual cognitive abilities in the context of learning. Increased demands due to 

enlarged spatial distance could be compensated by extended reaction times, whereas the 

overarching effect of increasing task complexity affected both measures without compensation. 

In addition, the study confirms the prevalence of the previously outlined processes involved in 

working memory updating (Ecker et al, 2010). These processes are directly reflected in 
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increased reaction times during updating steps compared to the more indirect reflection in error 

scores during the final recall.  

Summarizing the evidence obtained from the second experimental study, the superior 

logarithmic curve progression receives support from the well-established learning curve from 

Ebbinghaus (1964). On this account, the assumption that invested cognitive resources decrease 

at the same pace as learning performance increases receives reasonable corroboration but needs 

to be explored in more detail. Furthermore, condition effects in resumption performance relate 

to prior studies on volitional protection against competing goals (Gerjets et al., 2003; Scheiter, 

Gerjets, & Heise, 2014). Evidence shows that higher levels of task difficulty can shield against 

distractions from task-irrelevant information. In addition, such desirable difficulties could force 

people to apply alternative task-related strategies over time, for instance a more time-efficient 

heuristic encoding procedure that focuses just on a minor set amongst all offered cues. 

The demonstrated increasing performance in both primary and secondary task in the third 

experimental study, accompanied by decreasing progressions in speech-related and 

physiological parameters, supports the assumption of decreasing levels of cognitive load due to 

increasing schema acquisition. As already outlined by Kraiger et al. (1993), such pattern hints 

on dynamics related to primary task automation, as free resources from this task can be 

increasingly devoted to deal with secondary task requirements. The evident seasonal pattern 

raises the conclusion that the auditory-verbal modality combination puts higher demands on 

learners’ cognitive resources compared to the visual-motor modality combination. Since one 

potential explanation refers to the persisting dominance of the visual modality in many task 

domains, in instructional scenarios predominantly visual cues might be chosen for additional 

support. Similar to the results of the second experimental study, task performance in the transfer 

task again suggests a higher investment of cognitive resources with increasing task complexity. 

Tying in with evidence on desirable difficulties (Bjork & Bjork, 2011) and the zone of proximal 

development (Vygostki, 1963), to foster optimal learning performance, adaptive task 

procedures should provide constant challenges to keep learners involved in investing cognitive 

resources to achieve a robust and stable performance. On a methodological level, the 

correspondence between the applied measures particularly underlines the benefit to explore the 

potential of speech-related cognitive load indicators in multimodal learning environments. 

2.4 Limitations 
Although the first experimental study indicates statistically significant interactions between 

the addressed facets, these might have resulted due to interference in the experimental 
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manipulation. In particular, the induced spatial distance highly depended on the number of 

presented letters, as a closer spatial proximity was required if there were more letters on the 

screen. Moreover, familiarity with the Latin alphabet could not be fully controlled and usually 

differs even amongst native speakers, which resulted in task-inherent benefits for participants 

with higher fluency and exposure. 

From the obtained measures in the second experimental study, conclusions on the underlying 

progression of cognitive load result solely by the inversion of the resulting performance curves. 

Following Martin (2018), combined scores from invested time and obtained performance lack 

controllability, as participants could have reached equivalent levels of efficiency with different 

amounts of invested resources or achieved performance. Thus, a continuous monitoring of 

related resource demands is lacking as well as the further inclusion of motivational aspects. The 

latter could also have influenced how participants dealt with the task across different conditions 

of complexity. Since the task required participants to memorize only a few symbol 

combinations, participants facing increased complexity might have benefitted more from 

extended time frames due to presentation characteristics. Comparable to the previous study, the 

group-based testing sessions always involve the prevalence of peer-pressure in task-related 

timing. 

The latter aspect was addressed in the third experimental study due to the use of individual 

testing sessions, as well as the alignment in terms of stimuli presentation between conditions. 

However, differences in symbol complexity might have resulted from varying visual 

characteristics of the used symbols, like the salient edges of a star. These could have fostered 

benefits in terms of the retentivity of certain symbol combinations. Moreover, task order 

ambiguities could have occurred, since the secondary task was presented first and interleaved 

by the primary task. Inspecting the obtained measures more closely, progressions in 

physiological parameters may hint on the prevalence of an orientation response at the outset of 

the task, followed by the adjustment with increasing task progress. However, even after the first 

ten trials, a recognizable progression persists that hints on a modified pattern of cognitive 

resource investment.  

2.5 Future work 
The first experimental study mainly indicated a reduction of task complexity, the use of more 

abstract material without the reliance on previous knowledge, and the focus on the more 

processual characteristic of schema acquisition.  These aspects were addressed in the second 

experimental study that demonstrated the necessity to continuously monitor the task-related 
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investment of cognitive resources. In addition, the question persisted how robust the acquired 

schemata would be under conditions of enhanced transfer demands. While the third 

experimental study could seize the outlined suggestions by applying a multi-method approach 

to cognitive load assessment, and a subsequent classification task for assessing transfer 

performance, it still requires the inclusion of motivational characteristics in future studies. 

Further valuable perspectives could arise from the use of additional parameters such as gaze 

movements or mouse interaction patterns as well as the transfer into more applied task domains. 

Moreover, exploring the use of different secondary task paradigms that involve incompatible 

modality-content matchings and combine auditory-motor and/or visual-verbal channels could 

extend the informative value in terms of the robustness of the observed patterns. On the level 

of data analysis, the application of more complex procedures for inspecting stages across the 

underlying cognitive load progression, such as hidden Markov models (e.g., Visser, 

Raijmakers, & Molenaar, 2002), could further increase the predictive scope of the obtained 

insights. For purposes of classifying and interpreting multimodal cognitive load-related signals, 

the additional use of machine learning approaches can be of value, as demonstrated by Herms 

(2018). 

3 Cognitive modeling 
To strengthen and extend evidence obtained from the second experimental study 

(Wirzberger, Esmaeili Bijarsari, et al., 2017), a cognitive modeling approach using the 

cognitive architecture ACT-R (Adaptive Control of Thought – Rational; Anderson, 2007) 

constitutes a further methodological building block of the current thesis. The related purposes 

are twofold: Firstly, potential explanations for the unexpected effect of induced interruptions 

should be explored. Secondly, further insights into the cognitive processes behind the 

postulated facets of cognitive load should be obtained on a neural level by region-of-interest 

(ROI) predictions (Borst & Anderson, 2017) based on evidence from functional magnetic 

resonance imaging (fMRI). A pilot version of this model for the easy task condition was 

reported in Wirzberger, Rey, and Krems (2017) and has been expanded since to both conditions. 

As a great strength, a cognitive modeling approach requires a precise formalization of human 

cognition, since it raises the need to decompose steps within the given task and related cognitive 

actions. Based upon the close compatibility with vested psychological evidence on human 

information processing, such offers the opportunity to derive well-founded explanations on 

behavioral phenomena. The idea of building computational models to explain cognitive 

phenomena has already been discussed by Wegener (1967), who outlined the indicative value 
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of an electronic simulation of mental processes for deriving and validating the related 

hypotheses. Under the presumption of an existing analogy between model and psychological 

processes, it allows studying mental functions under conditions that would be difficult or even 

impossible to realize in human experiments. The constant interchange between experiment and 

simulation permits to verify and rethink given hypotheses on behavioral patterns and underlying 

cognitive strategies, and thus opens up the “black box”. In the context of the Cognitive Load 

Theory, there have been cognitive modeling accounts as well. Sweller (1988) used the 

production system PRISM (Langley & Neches, 1981) to explain cognitive load effects in 

problem-solving. He compared means-end and nonspecific goal strategies by determining the 

number of statements in working memory, the number of productions to fire, the number of 

conditions in productions to be matched, and the number of cycles to be executed. His 

conclusions indicate that the conventional means-end problem-solving strategy puts higher 

demands on cognitive resources and not necessarily fosters schema acquisition. 

Figure 2. Overview of ACT-R core modules with corresponding brain regions. Based on Borst & Anderson (2015) 

and Anderson (2007). 

Constituting a more prevalent and broadly used production-based approach, ACT-R is 

particularly characterized by its modular brain-inspired structure that is illustrated in Figure 2. 

The outlined modules represent goal planning (goal module), declarative memory (declarative 
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module), intermediate problem states (imaginal module), action coordination (procedural 

module), the handling of visual and auditory inputs (visual and aural module), and motor and 

vocal outputs (motor and vocal module). Borst, Nijboer, Taatgen, van Rijn, and Anderson 

(2015) validated the mapping between these modules and corresponding ROIs in the human 

brain by fMRI data. For instance, when a model presses a button, increased activity in the motor 

module corresponds to activity in the motor cortex devoted to the representation of the hand. 

Whereas processes in different modules can be executed in parallel, known bottlenecks in 

information processing are represented by a limited capacitiy of a single information element 

per module at the same time (e.g., Borst, Taatgen, & van Rijn, 2010; Byrne & Anderson, 2001; 

Salvucci & Taatgen, 2008).  

ACT-R relies on both symbolic and subsymbolic characteristics. The former involve the 

representation of declarative knowledge via so-called chunks of information and the interaction 

of defined modules through production rules. The latter constitute activation levels in 

declarative memory and utility of production rules. Chunks from declarative memory are 

retrieved based on their level of activation, which is calculated from the history and context of 

use and has to exceed a defined threshold to be eligible for selection. The full equation1 for 

each chunk i involves the components displayed in Equation 1: 

𝐴𝐴𝑖𝑖 =  𝐵𝐵𝑖𝑖 +  ∑ ∑ 𝑊𝑊𝑘𝑘𝑘𝑘𝑆𝑆𝑘𝑘𝑖𝑖 + ∑ 𝑃𝑃𝑀𝑀𝑙𝑙𝑖𝑖 +  𝜀𝜀𝑙𝑙𝑘𝑘𝑘𝑘 . (1) 

The recency and frequency of use of the chunk i is reflected by the base-level activation Bi, 

Wkj represents the amount of activation from source j in buffer k, Sji is the strength of association 

from source j to chunk i. Wkj and Sji are summed over all buffers that provide spreading 

activation and all chunks in the slot of the chunks in buffer k. P reflects the amount of weighting 

given to the similarity in slot l and Mli represents the similarity between the value l in the 

retrieval specification and the value in the corresponding slot of chunk i. Mli is summed over 

the slot values of the retrieval specification. The value of ε represents noise, which is composed 

from an instantaneous component that is computed at the time of a retrieval request, and a 

permanent component that is associated with each chunk. Base-level activation is calculated as 

shown in Equation 2: 

𝐵𝐵𝑖𝑖 = 𝑙𝑙𝑛𝑛�∑ 𝑡𝑡𝑘𝑘−𝑑𝑑𝑛𝑛
𝑘𝑘=1 �. (2) 

1 Equations on chunk activation, base-level activation and utility relate to content described in the ACT-R reference manual 
and the tutorial units, available via http://act-r.psy.cmu.edu/software/. 

http://act-r.psy.cmu.edu/software/
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It bases on the number of presentations n for the respective chunk i, the time tj since the jth 

presentation, and a decay parameter d. Each time a chunk is presented, its base-level activation 

is increased, which decays as a power function of the time since that presentation. These decay 

effects are summed up and then transformed logarithmically. 

Production rules consist of a condition part and an action part and are evaluated by the 

procedural module with regard to the content of the tested buffers. Based on the resulting 

pattern, a matching production rule is chosen, which triggers the related action. For instance, if 

the task is to react to a yellow number by key press, the visual module sees a yellow number, 

and the motor module is not in use, the action of pressing the key can be initiated. If more than 

one production rule fulfills the constraints, the selection of production i is informed by the 

subsymbolic cost-benefit mechanism of utility:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃𝑡𝑡𝑃𝑃(𝑃𝑃) =  𝑒𝑒𝑈𝑈𝑖𝑖 / √2𝑠𝑠

∑ 𝑒𝑒
𝑈𝑈𝑗𝑗 / √2𝑠𝑠𝑗𝑗

 .          (3) 

It can be described as displayed in Equation 3 by summing all productions j with expected 

utility values Uj that have matching conditions at the point of selection. Based on that, the 

production with the highest utility is chosen to fire. 

3.1 Model concept 
Each model run starts with an initial setting of the task goal, which is assumed to result from 

the previously read instruction. In the following, each learning trial builds upon three task-

related steps, displayed in Figure 3. At first, the presented symbol is searched and encoded, 

which is repeated for the second symbol in the case of the difficult condition. This procedure 

stores an intermediate representation of all encoded visual content in the problem state, for 

instance, the input symbols ‘square – circle’ in the difficult condition. Next, the model attempts 

to retrieve the associated response symbol from declarative memory. In the second step, a 

response is selected from the provided opportunities on the screen, either according to the 

retrieved chunk or by random choice in case of no successful retrieval. The final step comprises 

the search for a visual feedback on the given response and, in the case of a false response, an 

update of the existing intermediate representation. The final information contains both the input 

and the correct response parts of the symbol combinations, such as ‘square – circle – square’ in 

case of the previous example. In the first trials, there is no sufficiently matching content or no 

content at all to retrieve, resulting in slower and less accurate responses. After being presented 

the input symbols several times and retrieving related content from declarative memory, the 
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model performance gets increasingly faster and more accurate due to increasing chunk 

activation. 

Figure 3. Outline of steps to perform in each the learning trial of the task. Adapted from Wirzberger, Rey, et al. 

(2017).  

To account for the fact that humans sometimes retrieve related but ultimately wrong 

information from memory – in this case a wrong input-response association – ACT-R includes 

a partial matching mechanism. Based on initially defined similarities between chunks, a 

mismatch between request and actual retrieval is calculated. The higher the mismatch, the more 

the activity of the chunk is penalized (Lebiere, 1999). Increased interactivity between related 

elements of information (Sweller & Chandler, 1994; Sweller, 2010) is reflected in the spreading 

activation mechanism (Anderson, 2007) that distributes activation across chunks that share 

information elements. In the current task, spreading activation particularly effects the difficult 

task condition: Symbol combinations including the same input symbols, such as ‘square – 

circle’ and ‘circle – square’, obtain equal activation, independent of the correct symbol order.  

The steps to be performed within the interrupting task are outlined in Figure 4. Following a 

goal change due to the bottom-up triggered saliency of the interrupting task, the task procedure 

involves the steps of searching, counting, and responding to the indicated target symbols. Using 

a color to indicate the task switch followed the model implemented by Wirzberger and 
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Russwinkel (2015) and represents the immediate attention to the related screen change. Tying 

in with evidence on pre-attentive and attentive processes in the visual module of ACT-R 

(Nyamsuren & Taatgen, 2013), the second visual-location request in the visual search is 

enhanced by additional information on stimulus color that relates to distinct characteristics of 

the presented symbols. In addition, counting was assumed to constitute a highly trained 

behavior that occurs almost automatically, thus a simple counting function was applied instead 

of intermediate retrievals after each counting step. After finishing the counting part, on each of 

the two response screens the model encodes the requested symbol and attempts to retrieves the 

potential answer. Again, due to the partial matching mechanism the possibility to retrieve a 

wrong answer persists. 

Figure 4. Outline of steps to perform in each occurrence of the interrupting task. Adapted from Wirzberger, Rey, 

et al. (2017).  
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Aligning to the available button selection on the screen, the model operates on an increased 

amount of visual-number finsts. Furthermore, due to the fixed order of the buttons on the screen, 

they can receive immediate attention without searching through all buttons from the top. When 

resuming the learning task, in line with Altmann and Trafton (2002) the model attempts to 

retrieve the previous task goal and thus restores its representation. Emerging interruption effects 

can be attributed to a decay in the activation of chunks related to the learning task that slows 

down subsequent retrieval requests (Borst, Taatgen, & van Rijn, 2010, 2015; Trafton, Altmann, 

Brock, & Minz, 2003). Across both tasks, more specific actions are regarded as more useful 

and thus receive a slightly higher utility, for instance, productions related to attending or 

encoding instead of searching around. 

3.2 Model comparison 
Parameter settings in the reported model are outlined in Table 5 and correspond to the range 

of reported standard values (e.g., Anderson, Bothell, Lebiere, &, Matessa, 1998). In addition, 

the goal chunk related to the learning task received an initial base-level of 70 to account for the 

fact that participants received a comprehensive instruction on this task before. For the partial 

matching mechanism, similarities between symbols were set to -1, and for the spreading 

activation mechanism, content in the imaginal buffer was defined as source for spreading 

activation upon each retrieval from declarative memory. As already outlined, the increased 

amount of visual number finsts aligned to the button selection presented on the screen and 

received a value of 10. 

Table 5 

Parameter settings related to chunk activation and retrieval time 

:blla :mpa :masa :ansa :rtb :lfb 

Setting 0.5 0.401 1.7 0.2 0.11 3.8 

Description 
Base-level 

decay 

Mismatch 

penalty 

Maximum 

associative 

strength 

Instantaneous 

noise 

Retrieval 

threshold 

Latency 

factor 

Note. a Related to chunk activation. b Related to retrieval time (including retrieval failure). 

Model data based on n = 100 model runs in each condition, since it was not the goal to create 

an exactly mapping model run for each human participant (neasy = 55, ndifficult = 58), but rather 

to obtain robust conclusions from the average model performance. In addition, a close 

behavioral mapping in terms of interruption performance was not the core focus of the model, 
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thus in the following only comparative results regarding the symbol learning task will be 

reported in detail. However, it was ensured that no crucial differences between both conditions 

persisted for the interrupting task. Both human performance and the currently reported model 

meet this constraint.  

When comparing human and model data, beyond a graphical inspection Schunn and Wallach 

(2005) recommend the combined consideration of numerical goodness-of-fit indices related to 

the relative trend magnitude and the deviation from the exact location. They suggest R² to assess 

the relative trend magnitude, as it directly refers to the accounted proportion of variance and 

indicates a better fit by higher values. It is particularly suited to evaluate models with strong 

correlations to human data. For obtaining the deviation from the exact location, the root mean 

squared scaled deviation (RMSSD) constitutes a sophisticated approach:  

𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆𝑅𝑅 =  �∑
�𝑚𝑚𝑖𝑖−𝑑𝑑𝑖𝑖
𝑠𝑠𝑖𝑖 / �𝑛𝑛𝑖𝑖

�²

𝑘𝑘
𝑘𝑘
𝑖𝑖=1 =  �∑ (𝑚𝑚𝑖𝑖− 𝑑𝑑𝑖𝑖)²𝑛𝑛𝑖𝑖

𝑘𝑘𝑘𝑘𝑖𝑖
2

𝑘𝑘
𝑖𝑖=1  . (4) 

As obvious from Equation 4, the RMSSD scales the deviation between the model mean mi 

for each point i and the data mean di for each point i by the corresponding standard error of this 

mean from human data (𝑠𝑠𝑖𝑖 / �𝑛𝑛𝑖𝑖 ). The latter is calculated by the standard deviation si for each 

data mean i and the number of data values ni contributing to each data mean di, whereas k is the 

number of points i. On this account, the RMSSD provides a scale invariant measure to evaluate 

the model fit in units of the standard error, with lower values indicating a better fit.  

Figure 5. Reaction times for human data and model for the learning task in the easy and difficult condition 
(correct trials). Error bars indicate standard errors for human data. Red dashed lines indicate trials after 

an interruption.  

In terms of reaction times, comparisons focused only on correctly solved trials. As obvious 

from Figure 5, interruption effects are observable in both conditions for human data, but still 
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more distinctive in the easy task condition, as reported in Wirzberger, Esmaeili Bijarsari, et al. 

(2017). Standard errors are rather high for the first data point in the easy task condition, as only 

n = 2 observations fulfill the stated constraints. Besides the prevalence of interruption effects 

in both conditions, the visual inspection indicates that model data can map the initial decrease 

in reaction times in the difficult task condition, RMSSDdifficult = 2.16, R²difficult = 0.58. However, 

the model performs slightly slower than human participants during most of the trials. Apart 

from a subtler decrease in the beginning, the mapping fits quite well for later trials in the easy 

task condition, RMSSDeasy = 1.67, R²easy = 0.52. 

Figure 6. Accuracy for human data and model for the learning task in the easy and difficult condition. Error 

bars indicate standard errors for human data. Red dashed lines indicate trials after an interruption.  

For accuracy, Figure 6 indicates that the model can map the existing human behavior quite 

well in the easy task condition, RMSSDeasy = 1.51, R²easy = 0.69, although it achieves a higher 

performance in the end and shows a subtler reflection of interruption effects. The model in the 

difficult task condition learns slower compared to the easy task condition, but still faster than 

the human participants. However, apart from the nearly perfect location match in the last data 

points, it cannot fully map the final increase in the human data, RMSSDdifficult = 2.07, R²difficult 

= 0.57.  

In addition, predefined ROI-predictions were generated (Borst & Anderson, 2017), based 

upon the previously amplified mapping of activity in ACT-R modules on defined brain regions. 

The underlying approach uses the recorded start and end times of module activity to simulate a 

signal comparable to the blood oxygenation level obtainable via fMRI, which shows peaks 

about 4-6 s after the occurrence of neuronal activity. In the first step, the activity of each 

inspected module is represented as 0-1 demand function and convolved afterward with the 

hemodynamic response function, displayed in Figure 7. As an example, related to the task of 

the current model, longer retrieval times due to lower levels of chunk activation would result 

in increased activity in the declarative module. Such patterns are expectable in early stages of 
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the task, with increased task difficulty, or caused by interruption-related decay, and would be 

observable by higher peaks in the resulting simulated signal. 

Figure 7. Hemodynamic response function (based on SPM). Adapted from Borst & Anderson (2017). 

Figure 8. Module activity across different temporal stages of the symbol learning task (excluding resumption 

trials). Solid lines represent the easy task condition, dashed lines represent the difficult task condition. Blue lines 

represent trials in the early task stage (n = 20), red lines represent trials in the intermediate task stage (n = 19), and 

black lines represent trials in the late task stage (n = 20).  
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Prevalent changes in module activity due to task-inherent learning processes are displayed 

in Figure 8. The curves indicate a decrease in cognitive activity in later task stages in both 

conditions in the declarative module. The difficult task condition shows a higher level of 

activity across all stages, with a particularly distinctive peak across early task stages. Resulting 

activity in the imaginal module exerts a longer duration and shows a slightly increased level in 

the difficult condition. For the goal, procedural, visual and manual module levels of activity are 

rather comparable for both conditions, although the peaks occur later in the difficult condition. 

Figure 9. Module activity across interruption, resumption, and learning stages of the task. Solid lines represent 

the easy task condition, dashed lines represent the difficult task condition. Blue lines represent interruption trials 

(n = 5), red lines represent resumption trials (n = 5), and black lines represent learning trials (n = 59).  

Comparisons between the interrupting task and the learning task are depicted in Figure 9. 

These include a separate visualization of the resumption phase, defined as the first trial that 

immediately follows the interrupting task. Across all inspected modules, activity levels in the 

interrupting task do not differ between both task conditions, since the solid and dashed blue 

lines overlap almost all the time. For the declarative, goal, procedural and manual module, a 

higher activity across resumption trials compared to the remainder of trials in the learning task 

results for both conditions. In addition, obvious differences between both task conditions show 

up during the resumption phase for the goal module and indicate higher levels of activity in the 

easy task condition. By contrast, no crucial differences between the resumption phase and 
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regular learning trials result for the visual and imaginal modules. Apart from the goal module, 

the interrupting task always involves a higher level of activity, which peaks later in the 

declarative and manual modules. 

3.3 Implications 
The current model comprises a sophisticated approach to explore cognitive processes and 

mechanisms underlying changes in performance due to the inserted interruptions and task-

related progress. In particular, the application of the spreading activation mechanism to map 

the theoretically introduced concept of element interactivity (Chen et al., 2017; Ngu et al., 2018; 

Sweller & Chandler, 1994; Sweller, 2010) offers the potential for deconstructing and 

formalizing effects of increased task complexity on a cognitive level. Inspecting model 

performance in the easy task condition in more detail, the obvious decrease in human 

performance in the final learning stage could potentially result from effects of boredom or 

fatigue. Modeling and explaining such effects would require a different model that also focuses 

on these effects (Gonzalez, Best, Healy, Kole, & Bourne Jr., 2011). In order to keep the current 

model focused and as simple as possible, this component was not included. For the difficult 

condition, model performance hints on an underlying shift in task-related strategies. Due to the 

small number of learned symbol combinations, over time people might have applied a more 

heuristic encoding strategy with focus on the first symbol, directly mapping task execution in 

the easy task condition. Explaining such strategy shift would result in a more complex model 

on the level of production rules and corresponding selection mechanisms. Taking this into 

account, the current modeling approach offers potential for future work, first by broadening the 

scope of the existing model and second by validating this model with new tasks.  An additional 

benefit consists in explaining task order effects resulting from Wirzberger et al. (2018) with an 

additional ACT-R model that could build on the reported model. However, instead of dealing 

with an interrupting task, this model would face the constant requirement to simultaneously 

handle primary and secondary task procedures across both the visual and auditory modality. 

As obvious from the ROI-analysis, the model needs to invest a higher amount of declarative 

memory resources upon each retrieval in the early task stage due to the lack of suitable chunks 

and lower levels of chunk activation. The smaller level of activity with increasing task progress 

emphasizes the prevalence of learning effects in both conditions, as existing content in 

declarative memory receives increasingly higher activation and thus can be retrieved faster and 

more accurate. In the difficult task condition, invested declarative resources are constantly 

higher across all stages, which by closer inspection relates to the increased influence of partial 
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matching that penalizes chunk activation and extends retrieval times. It also corresponds well 

to the previously outlined conceptual approach by Whelan (2007). He attributed increased 

activity in the dorsolateral prefrontal cortex, a brain-region also connected to the declarative 

module, to higher levels of intrinsic cognitive load. The later peaks in activity in all modules in 

the difficult task condition potentially relate to attending and encoding an additional symbol, 

which, for instance, delays the onset of motor activity related to the response selection. 

Comparing activity patterns in both learning and interrupting tasks emphasizes the interrupting 

potential of the visual search task, since the activity in several modules clearly exceeds the 

activity during symbol learning. However, for both task conditions, task-related demands 

observable in the goal module are still higher in the learning task, hinting on more complex 

task-inherent control requirements. Similar activity patterns in both task conditions for the 

interrupting task reflect the absence of crucial differences between conditions and align to the 

pattern in human data reported by Wirzberger, Esmaeili Bijarsari, et al. (2017). The observable 

increased level of activity in the visual module during the interrupting task, which was supposed 

to trigger extraneous cognitive load, corresponds well to the reported activity in brain regions 

involved in sensory processing (Whelan, 2007). Finally, observable differences in goal activity 

during the resumption stage align well with predictions stated by the memory-for-goals model 

(Altmann & Trafton, 2002). They relate to the demand to rebuild the goal-representation of the 

learning task after each interruption, which also requires additional production rules, as 

reflected in increased procedural activity. Increased levels of resumption-related activity in the 

declarative module should arise from the decay of chunks related to the acquired symbol 

combinations. Finally, a reasonable explanation for the observable increase in motor-related 

activity in the resumption stage consists in the relocation of the mouse cursor from a different 

response screen. 

4  Conclusions 
The current thesis critically approached existing debates in cognitive load research related 

to the scope and interplay of distinct resource-demanding facets in instructional situations. 

Taken together, it emphasizes a process-related reconceptualization of the existing three-

component model and underlines the importance of a combined inspection of different 

cognitive load measures. By extending the experimentally obtained behavioral results with a 

cognitive modeling approach, underlying cognitive processes and mechanisms could be 

inspected in more detail. The obtained insights further support the time-related reconsideration 

of the cognitive load facet framework, even on a neural level. With reference to applications in 
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instructional situations, the resulting evidence can provide a vested foundation for the 

development of elaborated adaptive instructional procedures, both on the level of underlying 

algorithms and the design of instructional support. On this account, the research conducted 

within this thesis leverages a pathway to innovative approaches in the development of 

intelligent educational assistants. 
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