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Schema-related cognitive load influences
performance, speech, and physiology in a
dual-task setting: A continuous multi-
measure approach
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Abstract

Schema acquisition processes comprise an essential source of cognitive demands in learning situations. To shed light on
related mechanisms and influencing factors, this study applied a continuous multi-measure approach for cognitive load
assessment. In a dual-task setting, a sample of 123 student participants learned visually presented symbol combinations
with one of two levels of complexity while memorizing auditorily presented number sequences. Learners’ cognitive load
during the learning task was addressed by secondary task performance, prosodic speech parameters (pauses, articulation
rate), and physiological markers (heart rate, skin conductance response). While results revealed increasing primary and
secondary task performance over the trials, decreases in speech and physiological parameters indicated a reduction in the
overall level of cognitive load with task progression. In addition, the robustness of the acquired schemata was confirmed
by a transfer task that required participants to apply the obtained symbol combinations. Taken together, the observed
pattern of evidence supports the idea of a logarithmically decreasing progression of cognitive load with increasing
schema acquisition, and further hints on robust and stable transfer performance, even under enhanced transfer demands.
Finally, theoretical and practical consequences consider evidence on desirable difficulties in learning as well as the
potential of multimodal cognitive load detection in learning applications.

Keywords: Schema acquisition, Cognitive load assessment, Dual-task setting, Prosodic speech parameters, Physiological
measures

Significance
Interactive learning and training technologies enhance
task opportunities in various application domains but may
also increase demands on cognitive resources. Arising pit-
falls can be avoided by providing systems with knowledge
about users’ current mental states, which allows regulating
system responses in an adaptive and personalized way. For
instance, during learning activities, a system could align
features such as the amount and speed of the presented
content or the degree of instructional support to increase
motivation, encourage sustained performance, and foster
system acceptance. Related challenges firstly involve

measurement issues, i.e., an accurate user state recogni-
tion that requires intelligent algorithms for correctly inter-
preting patterns contained in the acquired signals.
Secondly, the system behavior needs to be continuously
adjusted to meet users’ needs in the most sophisticated
way possible. The current research provides relevant
pre-requisites for both issues by monitoring variations in
cognitive demands over the task with a novel combination
of sensitive measures related to performance, speech, and
physiological reactions. Applying the summarized evi-
dence to real-world applications, dynamic recognition al-
gorithms could be developed for computerized learning
devices such as mobile systems that incorporate wearable
multimodal sensors.
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Background
Looking back in the history of cognitive psychology,
there is a long research tradition on cognitive schemata
as crucial outcomes of learning processes (Ghosh & Gil-
boa, 2014). Once knowledge has been acquired success-
fully, it is represented and organized in small bundles of
information that are constructed during learning and ap-
plied automatically in later process stages. Research in
this field has mainly covered structural aspects (Bartlett,
1932; Rumelhart, 1980) and mechanisms of schema ac-
quisition and adjustment (Piaget, 1952), but less concern
was devoted to related demands on learners’ cognitive
resources and their changes during the learning process.
The current study addresses this research gap by moni-
toring the interplay of load inducing factors in a con-
trolled learning scenario with a combination of
continuous cognitive load measures.

Theoretical perspectives in cognitive load research
As we consider cognitive resource investment in instruc-
tional situations, the Cognitive Load Theory (CLT; Swel-
ler, Van Merriënboer, & Paas, 1998; Sweller, Ayres, &
Kalyuga, 2011) becomes an indispensable source of ex-
planation. In brief, the theory resides on three core as-
sumptions: Firstly, based on well-established memory
models (Anderson, 1983; Atkinson & Shiffrin, 1971;
Baddeley, 1992), it postulates limited working memory
resources in terms of duration and capacity of informa-
tion storage. Secondly, long-term memory resources are
assumed to lack such boundaries and hold benefits for
elaborated learning processes. Thirdly, mental represen-
tation of knowledge should occur via schemata, de-
scribed as organized knowledge structures with stable
patterns of relationships between elements (Kalyuga,
2010). A further characteristic of the theoretical frame-
work is the separation of the overall cognitive load con-
struct into the facets of intrinsic, extraneous, and
germane cognitive load (Sweller et al., 1998). Whereas
intrinsic cognitive load (ICL) results from the number of
interrelated elements of information, determining the
complexity of the used learning material relative to
learners’ previous knowledge, extraneous cognitive load
(ECL) is associated with the surrounding instructional
situation, i.e., ways of content presentation or situational
constraints. Germane cognitive load (GCL) arises from
relevant processes of schema acquisition and automa-
tion. Prior research shows that high levels of ECL ham-
per learning performance, but only if high amounts of
ICL are present at the same time (Sweller et al., 1998).
Whereas ECL should be minimized and ICL kept at a
manageable level, the instructional focus is put on fos-
tering GCL to achieve optimal learning outcomes.
Theory-related discussions in the more recent past ad-

dressed the assumed additive relationship between ICL,

ECL, and GCL (De Jong, 2010; Park, 2010; Sonnenfeld
& Keebler, 2016) as well as substantial redundancies in
the facet of GCL. This facet was introduced in addition
to the initial two-component framework mainly on the-
oretical accounts instead of empirical evidence (Sweller
et al., 1998). These issues resulted in efforts on reformu-
lating the postulated theoretical framework. One ap-
proach suggests a reduction of cognitive load facets back
into a two-component model, which contrasts product-
ive factors beneficial for learning (ICL) with unproduct-
ive factors that impair learning (ECL) and subsumes
GCL under the facet of ICL (Kalyuga, 2011; Kalyuga &
Singh, 2016; Sweller, 2010). Another approach postulates
a process-driven reconceptualization of the three-com-
ponent model that quantifies temporal changes in GCL
over the task (De Jong, 2010; Sonnenfeld & Keebler,
2016; Wirzberger, Esmaeili Bijarsari, & Rey, 2017). Fol-
lowing this view, ICL, ECL, and GCL reside at different
levels of inspection: a structural level in terms of ICL
and ECL, which can be determined a priori (Beckmann,
2010; Wirzberger, Beege, Schneider, Nebel, & Rey, 2016),
and a processual level in terms of GCL, which undergoes
changes throughout the learning task and depends on
the achieved level of schema acquisition.
Empirical evidence for the latter approach arises from

Wirzberger et al. (2017), who applied a basal learning
task that a priori varied the amount of interacting infor-
mation elements (ICL) and induced interruptions at sev-
eral points over the task (ECL). Statistical analyses
compared linear, quadratic, and logarithmic progression
models, and the results suggested a logarithmic progres-
sion of schema-related cognitive load (GCL) over time,
influenced by structural features. The resulting inversion
of the learning curve (Ebbinghaus, 1964) aligns well with
established evidence on cognitive skill acquisition (An-
derson, 1983; Kraiger, Ford, & Salas, 1993; Shiffrin &
Schneider, 1977). It also provides further evidence that
building and organizing schematic structures of know-
ledge in the initial process stages shed higher demands
on cognitive resources, whereas automation and tuning
procedures in later process stages require smaller re-
source supplies. Although the approach already yielded
promising results, the study raised the need for a more
continuous controlled inspection of the determined
mechanisms.
Related questions on the durability and robustness of

previously established schemata might be addressable by
applying acquired knowledge structures on distinct but
related problems. Kalyuga (2010) particularly recom-
mends tasks involving grouping or categorizing to create
such transfer demands. Evidence on expertise develop-
ment shows that novice learners require less complex
tasks in early training stages to engage in robust and
stable schema acquisition (Van Merriënboer, Kester, &
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Paas, 2006); thus, novice learners dealing with a complex
task right from the beginning should perform worse. In
addition, extended transfer requirements would overly de-
mand cognitive resources and further decline performance.

Approaches to cognitive load assessment
Studying the assumed interplay of cognitive load factors
requires their valid assessment. Several efforts have been
made, relating to performance, psychophysiology, behav-
ior, and self-report (Sweller et al., 2011; Wickens, Hol-
lands, Banbury, & Parasuraman, 2013; Zheng, 2018).
From the variety of approaches, a selection will be dis-
cussed in the following, which is considered to be rele-
vant for the applied task framework.
Since learners’ performance is explicitly addressed and

recorded in learning scenarios, the inspection of
performance-related parameters offers valuable insights.
Such measures usually operate on observable perform-
ance indices in dual-task paradigms that use secondary
tasks to induce and/or assess cognitive load (O’Donnell
& Eggemeier, 1986). If the secondary task mainly serves
to induce cognitive load, primary task performance is
observed, whereas the inspection of secondary task per-
formance is applied for purposes of assessing cognitive
load (Brünken, Plass, & Leutner, 2004; Brünken, Steinba-
cher, Plass, & Leutner, 2002; Kraiger et al., 1993; Park &
Brünken, 2018). A conjoint observation of both aspects
provides a more comprehensive view; thus, often both
parameters are inspected complementarily. In terms of
task-related stimulus and response modalities, evidence
on modality compatibility in dual-task performance
shows that for spatial codes a combination of visual in-
put and manual output is superior to auditory input and
vocal output, whereas the results are reversed for verbal
codes (Hazeltine, Ruthruff, & Remington, 2006). For this
reason, when employing dual-task techniques, compat-
ible input and output modalities for both tasks should
be used so that resource interference only occurs due to
content-related processing demands. Participants’ per-
formance in primary and secondary tasks can further be
evaluated in terms of efficiency (Hoffman & Schraw,
2010), with higher levels of efficiency corresponding to
high performance and low effort. Efficiency measures
usually are calculated from effort indicators like re-
sponse time, which indicates how cognitively demanding
a task was, and performance indicators like correct re-
sponses (Sweller et al., 2011).
Bodily functions are often affected involuntarily when

people are put under cognitive demands and thus pro-
vide reliable online indicators of current levels of cogni-
tive load. Among the variety of psychophysiological
techniques, heart rate (HR) and skin conductance re-
sponse (SCR) have already shown sensitivity to changes
in cognitive resource demands in dual-task settings

(Mehler, Reimer, & Coughlin, 2012). Both parameters in-
dicate increasing levels of imposed cognitive load by in-
creasing values.
Besides involuntarily occurring bodily responses, par-

ticipants show voluntarily behavioral reactions as well.
The effects of cognitive load on duration-based speech
parameters can be classified into the field of prosody, for
instance, disfluency, articulation rate, content quality,
the number of syllables, and silent pauses as well as
filled pauses (Berthold & Jameson, 1999; Müller,
Großmann-Hutter, Jameson, Rummer, & Wittig, 2001).
Evidence suggests that, with increasing levels of cogni-
tive load, speaking rates (the number of syllables per
time) and articulation rates (the number of syllables per
time excluding pauses) decrease. More and longer
pauses during speech flow, induced by planning pro-
cesses, also reflect higher levels of cognitive load (Espo-
sito, Stejskal, Smékal, & Bourbakis, 2007; Khawaja, Ruiz,
& Chen, 2007, 2008; Müller et al., 2001). So far, the de-
scribed speech parameters have been applied to deter-
mine cognitive load in task settings that demand
cognitive resources on a shorter time span, for instance,
a reading span task or a Stroop interference task under
time pressure (Yap, 2012). A novel perspective arises by
applying this approach to capture naturally occurring
changes in cognitive resource demands due to schema
acquisition processes.
Beneath the introduced objective measures, subjective

means of assessment can be applied as well. Self-report
rating scales comprise an easily applicable and widely
used approach in cognitive load assessment that relies
on learners’ ability to provide valid retrospective estima-
tions of the experienced level of cognitive load. A rating
scale that addresses the facets of ICL, ECL, and GCL in-
dependently was developed by Leppink, Paas, Van der
Vleuten, Van Gog, and Van Merriënboer (2013). Higher
levels of subjectively experienced cognitive resource de-
mands on each facet are indicated by higher ratings on
the related items.
In summary, each measure entails certain strengths

and weaknesses (Martin, 2018; Sweller et al., 2011;
Wickens et al., 2013). Although performance-related pa-
rameters provide a continuous assessment and often
emerge directly from the task, secondary tasks poten-
tially interfere with primary tasks and require thoughts
regarding the adequate level of complexity as well as the
employed stimulus and response modalities. Psycho-
physiological techniques provide a continuous and reli-
able assessment, since physiological responses are hardly
controllable voluntarily, but these techniques require
special equipment, substantial expertise, and effort in
application and analysis to avoid and control for artifacts
and noise. Behavioral parameters also ensure a continu-
ous and reliable way of assessment but require high
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expertise and effort as well. While subjective ratings via
questionnaires are rather easily applicable, they provide no
continuous assessment and rely on participants’ retro-
spective estimations of prior resource demands. For hand-
ling the outlined limitations, a combination of different
assessment approaches is therefore regarded as the most
promising solution to strengthen the informative value of
the emerging results (Chen, Zhou, & Yu, 2018; Korbach,
Brünken, & Park, 2018).

Present experiment
To address the outlined research gaps, the current study
focused on changes in cognitive load related to the
process of schema acquisition, extended by the issue of
robustness of the obtained schemata. A basal learning
task and a related basal schema application task
(Kalyuga, 2010) provided a concise, controllable, and in-
ternally valid framework. By combining a set of continu-
ous performance-related, behavioral, and physiological
measures, completed by subjective self-reports, the com-
prehensive capture of underlying cognitive processes
was ensured.

Hypotheses
Based on the introduced theoretical background, a loga-
rithmically decreasing level of cognitive load with in-
creasing schema acquisition was expected, which should
be observable in performance, speech, and physiological
parameters (hypothesis 1a). Moreover, an increase in
subjectively reported cognitive load with a higher level
of task complexity was postulated (hypothesis 1b). Re-
garding retention and transfer performance, with a
higher level of task complexity a decrease in retention
performance (hypothesis 2a) and transfer performance
(hypothesis 2b) was assumed, as well as a decrease in
transfer performance with increasing transfer demands
(hypothesis 2c).

Methods
Pre-study
A schema application task was designed to address the ro-
bustness of participants’ schema acquisition. It required
participants to categorize symbol combinations with refer-
ence to a displayed target symbol as either correct or false,
according to previously acquired knowledge. Combina-
tions were composed from the four geometrical symbols
square, star, triangle, and circle. Some symbol combina-
tions included non-prototypical symbols to determine if
the established schemata were stable enough to deal with
such kind of transformation. A pre-study should ensure
that non-prototypical symbols are still categorized accord-
ing to their underlying prototype.

Pre-study methods
Seventy-four participants (Mage = 35.00 years, SDage =
13.09, range 19–64, 63.51% female) completed the test.
Of these, 54.05% had already graduated or were cur-
rently enrolled as graduate students, 20.27% had com-
pleted an apprenticeship, 10.81% were undergraduate
students, and the remaining 14.87% reported diverse
levels of graduation or did not reveal their educational
status.
Non-prototypical symbols were generated with Adobe

Photoshop and comprised different severities of either
barrel (outward, negative deviation from 0) or pincush-
ion (inward, positive deviation from 0) distortion. As
displayed in Fig. 1, the levels of distortion ranged from
small (± 30%) to medium (± 60%) to high (± 90%).
Participants filled out an online questionnaire includ-

ing the prototypical and non-prototypical symbols ac-
companied with a categorization request. After
classifying each symbol as either circle, square, star, or
triangle, participants had to rate the level of distortion
on a seven-point Likert scale with verbal anchoring at
the extreme points to determine the perceived severity
of deviation from the underlying prototype. As the pro-
totypes were included in the presented symbol set as
well, the scale started from 0 (“not at all”) and reached 6
(“very strong”) to provide participants the opportunity of
a valid and reliable rating on a sufficient level of com-
plexity (Lozano, García-Cueto, & Muñiz, 2008).

Pre-study results
Descriptive analyses of categorization frequencies and
distortion ratings are reported in Table 1. They indicate
rather stable and homogeneous classifications of
non-prototypical symbols according to their underlying
prototype, with at least 94.7% correct categorizations,
even on the broader distribution of age and educational
backgrounds. Moreover, even on a descriptive level, dis-
tortion ratings outline an increasing amount of per-
ceived deviation with increasing severity of distortion.
Repeated measures analyses of variance (ANOVAs) on

the distortion ratings were computed separately for each
symbol category, with severity of distortion as a seven-
fold within-subjects factor. Mauchly’s test indicated a
violation of sphericity for all symbol categories; there-
fore, the degrees of freedom were corrected using
Greenhouse-Geisser estimates for circle, χ2(20) = 69.184,
p < .001, ε = 0.751, square, χ2(20) = 61.139, p < .001, ε =
0.778, star, χ2(20) = 156.934, p < .001, ε = 0.608, and tri-
angle, χ2(20) = 49.509, p < .001, ε = 0.837. The results in-
dicated strong and highly significant main effects of
distortion severity for circle, F(4.504, 388.761) = 109.263,
p < .001, ηp

2 = .599, square, F(4.668, 340.729) = 151.472,
p < .001, ηp

2 = .675, star, F(3.649, 266.373) = 87.503, p
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< .001, ηp
2 = .545, and triangle, F(5.020, 366.476) =

175.157, p < .001, ηp
2 = .706.

Post hoc pairwise comparisons with the
Bonferroni-Holm correction (Maxwell, 1980) revealed sig-
nificant differences between distorted symbols and proto-
types for all levels of distortion severity in each symbol
category (p < .001). When comparing outward and inward
distortion within and across distortion severities, diverse
patterns appeared depending on the symbol category. For
both circle and square, no significant differences resulted
between 30 vs. − 30, 60 vs. − 60, and 90 vs. − 90, whereas
all other comparisons achieved significance with at least p
< .05. In the star category, no significant differences re-
sulted between 60 vs. – 60, 60 vs. 90, and − 60 vs. 90, but
significant differences (p < .001) occurred for all other
comparisons. All pairwise comparisons achieved signifi-
cance in the triangle category with at least p < .05.
Based on both categorization frequencies and distor-

tion ratings, non-prototypical symbols with superior psy-
chometric properties were chosen. In addition to
considering correct classifications and significant pair-
wise comparisons, a balanced representation of both
barrel and pincushion distortion across symbols was
sought. The resulting pattern comprised − 30, − 60, − 90
for circle, − 30, 60, − 90 for square, 30, 60, − 90 for star,
and 30, − 60, − 90 for triangle.

Main study
Participants
A total of 123 undergraduate and graduate students (Mage

= 22.67 years, SDage = 3.55, range 18–34, 76.42% female)
participated in the main study. They were enrolled in Com-
munication Science (41.32%), Psychology (30.58%), Science,
Technology, Engineering, and Mathematics (STEM) fields
(11.57%), Humanities (9.09%), or Education (5.79%) and re-
ceived either a financial allowance of 5€ (49.59%) or course
credits (50.41%) as compensation. Experimental conditions
did not differ regarding age, t(119.05) = 0.62, p = .539, d =
0.111, gender, χ2(1) < 0.01, p = .960, distribution of study
courses, χ2(6) = 4.42, p = .620, or compensation choice,
χ2(1) = 0.40, p = .527.

Design
The chosen learning task required participants to detect,
remember, and retrieve four easy or difficult combinations
of arbitrary geometric symbols while simultaneously
memorizing five-digit number sequences as a secondary
task. The resulting experimental design included task
complexity as an independent between-subjects factor
that varied due to the arrangement of the symbol combi-
nations (three vs. four symbols, symbol order). As
dependent variables, learners’ performance in both pri-
mary and secondary task, spoken responses on the

Fig. 1 Distorted symbols. a = square 30, b = square 60, c = square 90, d = star − 30, e = star − 60, f = star − 90

Table 1 Categorization and distortion rating of prototypical and distorted symbols

Dist. Circle Square Star Triangle

% M SD % M SD % M SD % M SD

0 100 1.09 0.38 100 1.12 0.72 97.3 1.03 0.16 100 1.03 0.16

– 30 100 2.45 1.04 100 2.82 1.03 100 1.49 0.82 100 2.28 0.77

30 98.7 2.20 0.98 98.7 2.76 1.07 100 1.27 0.45 100 2.81 1.18

– 60 100 3.27 1.31 98.7 3.77 1.17 100 2.14 1.24 98.7 3.14 1.16

60 100 3.18 1.33 100 3.72 1.28 100 2.08 1.16 94.7 4.03 1.24

– 90 100 3.69 1.33 100 4.65 1.21 100 2.32 1.25 100 3.46 1.28

90 98.7 3.70 1.32 97.3 4.53 1.40 98.7 3.61 1.50 98.7 4.59 1.32

Dist. severity of outward or inward distortion, % percentage of correct categorizations, M mean of distortion rating, SD standard deviation of distortion rating
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secondary task, and physiological reactions were recorded
continuously during the learning task. The standardized
cognitive load questionnaire by Leppink et al. (2013) pro-
vided a summative evaluation of the inspected cognitive
load facets. An open question on schema recall after the
learning task enabled insights into the quality of schema
acquisition over the task. Participants’ working memory
capacity was derived from a translated version of the auto-
mated operation span task (OSPAN; Unsworth, Heitz,
Schrock, & Engle, 2005) and used as the control variable.
With reference to the CLT, task complexity reflected

the ICL component and was addressed according to the
concept of element interactivity (Sweller, 2010). Unlike
the work of Wirzberger et al. (2017), the scope of
symbol combinations was increased by one element to
avoid effects of boredom due to insufficiently low levels
of task demands. The embedded secondary task charac-
terized the ECL component, which aligns with the
conceptualization of ECL as situational constraints
(Wickens et al., 2013). Furthermore, the combined in-
spection of the continuous cognitive load measures
hinted at the underlying cognitive resource investment
pattern and represented the GCL component (Sweller et
al., 2011). Whereas primary task efficiency resources
were invested in schema acquisition relative to the
achieved outcome (Hoffman & Schraw, 2010; Paas &
Van Gog, 2006), secondary task efficiency hinted at the
actual load imposed by the primary task. Based on this
view, available resources would arise only due to already
established and usable schemata (Kraiger et al., 1993).
An additional task on applying the obtained schemata

by solving a categorization task addressed the robustness
of the schema acquisition process. It required partici-
pants to evaluate the correct match of displayed input
and response parts of the previously acquired symbol
combinations, which included distorted symbols in parts
of the trials. The underlying 2 × 5 factorial mixed design
included a between-subjects factor task complexity (easy
vs. difficult) and a within-subjects factor level of distor-
tion (0 vs. 30 vs. 60 vs. 90) as independent variables. Re-
action time and a corrected error score were recorded as
dependent variables.

Materials

Learning task Computer-based tasks were realized with
OpenSesame (Mathôt, Schreij, & Theeuwes, 2012) and
provided on a standard desktop computer with a 24″
monitor. Trials within the learning task were inspired by
the procedure of the OSPAN (Unsworth et al., 2005)
and comparable automated complex span tasks, which
include a distractor task and a target task in each trial in
alternating sequence. In the current study, within each
trial the number task (secondary task) was presented

first as a distractor and followed by the symbol task (pri-
mary task) as a target. Unlike the complex span task
procedure, which involved new items to memorize in
each trial for both the target and distractor tasks, the
learning content of the primary task persisted during the
entire task.
As outlined in Fig. 2, each of the 64 trials started with

the auditory presentation of a unique randomly chosen
five-digit number for 5000 ms. The amount of five digits,
as well as the used time spans, was determined within a
short internal pre-test with N = 7 participants (Mage =
28.71, SDage = 2.43, range = 26–32, 4 male) and chosen
to avoid distraction effects on the primary task by an
overly complex secondary task. Indicated by a black
speaker symbol on the screen, participants had to listen
carefully and memorize the numbers in correct se-
quence. Afterward, a randomly chosen input part of one
out of four abstract symbol combinations was presented
for 2 s. This input part comprised two symbols (easy
condition) or three symbols (difficult condition). Partici-
pants had to remember the shown symbols in correct
order and complete the sequence by choosing a symbol
as a response on the next screen by mouse click. In this
vein, a total of three (easy condition) or four (difficult
condition) symbols formed a complete combination. As
shown in Fig. 2, the response screen simultaneously pre-
sented the four possible response symbols in a randomly
arranged 2 × 2 grid for 5 s. This was followed by a feed-
back screen lasting 2 s that also included the correct
choice for false responses to foster correct schema ac-
quisition. Finally, indicated by a black speech bubble
symbol, participants had to recall the memorized digit
sequence from the trial outset verbally within 5 s.

Schema application task During each of the 60 trials in
the schema application task, participants evaluated if the
input part of a presented symbol combination matched
or mismatched the response part. As depicted in Fig. 3,
the response part of the symbol combination was shown
in the upper part and the potential input part in the
lower part of the screen. Response parts were always
represented in prototypical symbols, whereas half of the
input parts included distorted symbols from the
pre-study. The pool of presented stimuli comprised cor-
rectly matched input and target parts, existing input
parts with mismatched target parts, and non-existing in-
put parts with mismatched target parts. Within 5 s, par-
ticipants had to classify the presented combination as
false or correct by pressing either the left (false) or right
(correct) mouse key. Contrary to the learning task, par-
ticipants received no further feedback on their response.

Questionnaires on retention and cognitive load For
assessing retention performance, participants received a
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computer-based form with a grid of three (easy condi-
tion) or four (difficult condition) empty boxes per com-
bination in four rows. They had to recall the memorized
symbol combinations by dragging symbols from an in-
finite pool for each possible symbol (i.e., circle, square,
triangle, or star) via mouse click and dropping them into
the existing grid boxes to form combinations. In
addition, they could indicate corrections on the provided
combinations in a separate comment space below.

Participants’ subjectively perceived level of cognitive load
was addressed on 11-point Likert scales via the 10-item
questionnaire by Leppink et al. (2013) that differs be-
tween the three subscales of ICL, ECL, and GCL.

Procedure
Data were obtained in individual testing sessions of
about 60 min in a separate laboratory, equipped with a
standard desktop computer for the participant and an

Fig. 3 Stimuli in the schema application task: a difficult condition with prototypical symbols and b easy condition with distorted symbols

Fig. 2 Schematic outline of the trial procedure in the learning task. Superscript indices indicate affiliation with the primary1 or secondary2 task
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experimenter netbook to record the physiological data.
At the outset of each testing session, participants were
welcomed and signed an informed consent. This form
outlined the purpose and procedure of the study and en-
sured that participants’ treatment aligned with approved
ethical standards and that their privacy was respected.
Afterward, the OSPAN had to be completed, which usu-
ally took about 15 min. Before starting the learning task,
the experimenter had to fulfill several preparatory duties,
requiring about 5 min. First, the electrodes for the
physiological measures were attached to the left hand
and a close-talk microphone for the speech recording
was placed at the upper part of the participant’s ster-
num. Following an initial adjustment of the speech re-
cording volume to individual voice characteristics, the
learning task was completed within an average duration
of 20 min. After the electrodes were removed, partici-
pants worked on the questionnaires on retention, cogni-
tive load, and demographics, which were provided
online and were completed in about 10 min by most
participants. Finally, they completed the schema applica-
tion task (about 10 min) and were debriefed and
approved.

Scoring
Primary task efficiency was computed, following the like-
lihood model (Hoffman & Schraw, 2010), as the quotient
of correct responses (performance) and reaction times
(effort) within each trial. Since reaction times were re-
trieved in milliseconds, scores were multiplied by 1000
to obtain the proportion of correct responses per sec-
ond. The resulting values provide a hint on the invest-
ment of available mental resources over the task: if
learners start to perform faster and less erroneously on
the task, they must invest less mental capacity.
For secondary task efficiency, also based on the likeli-

hood model approach (Hoffman & Schraw, 2010), per-
formance was computed by comparing spoken words to
correct words from the reference and subtracting the
amount of substituted, deleted, and inserted words (Lee,
1988) relative to the total number of words in the refer-
ence (word accuracy). The participant’s effort was
reflected in the time starting from the presentation of
the visual stimulus to the end of the last uttered digit
(verbal response duration), which covered the entire an-
swer process.
Speech parameters were extracted on the phoneme

level using an automatic speech recognition system
(Herms, 2016). The resulting transcripts included
spoken units and the corresponding time codes in milli-
seconds and were used to derive the articulation rate,
the number, and the mean duration of silent pauses. The
articulation rate represented the total number of pho-
nemes divided by the utterance duration excluding the

total duration of silent pauses, the number of pauses
reflected the total number of silent pauses in an utter-
ance, and the mean pause duration was calculated from
the total duration divided by the number of silent
pauses.
Physiological data were recorded at a frequency of

128 Hz with a NeXus-10 Mark II from sensors attached
to the volar surface of the distal phalanges of the left
hand. While the heart rate (HR) signal was obtained at
the trigger finger, the skin conductance response (SCR)
was recorded at the middle and ring fingers. Data prep-
aration involved the calculation of an individual baseline
for each participant from values located in the prepar-
ation phase of about 5 min before starting the learning
task. Recorded SCR and HR values were normalized to
the individual baseline value and aggregated on mean
values for events within each trial. Each event repre-
sented a subtask within the learning trial and was related
to a screen change, i.e., the auditory presentation of a
number sequence, the visual presentation of the symbol
combination input, the response part of the presented
symbol combination, a feedback on the given response,
and finally the verbal recall of the memorized number
sequence.
For obtaining retention performance, sum scores were

calculated for all memorized symbol combinations and
all correctly memorized symbol combinations, resulting
in values ranging from 0 (neither combination memo-
rized correctly) to 4 (all combinations memorized cor-
rectly). Transfer performance was obtained from the
schema application task in terms of reaction times on
the provided classifications as well as correct responses.
The latter were adjusted for inherited errors from the re-
tention task.
Cognitive load scores were derived from sum scores

for each cognitive load facet, resulting in a maximum of
30 points for ICL and ECL and a maximum of 40 points
for GCL. Subscales achieved satisfying internal consist-
encies of α = .831 for ICL, α = .708 for ECL, and α = .876
for GCL. In line with Conway et al. (2005), who reported
a clear advantage of partial credit scoring procedures
over all-or-nothing scoring procedures, the partial load
score for the OSPAN was computed by awarding one
point for each correctly recalled letter. Across the three
test blocks, the task achieved an appropriate internal
consistency of Cronbach’s α = .805.

Results
Cognitive load progression
Some datasets had to be excluded from data analysis due
to missing values or the failure to meet the 85% accuracy
criterion in the OSPAN1 task, a lack in language profi-
ciency, or an observable violation of the instruction.
Conditional growth curve models were computed to
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inspect progressions in primary and secondary task effi-
ciency from a temporal perspective. Values for all relevant
variables were z-standardized to obtain standardized β co-
efficients. Models were fit with restricted
maximum-likelihood estimation and included time, condi-
tion, the OSPAN score, and the interaction between time
and condition predictors as fixed effects aligned to the ex-
perimental task design. To take into account individual
differences between participants in reaction to experimen-
tal variations, a time slope as well as subject-specific inter-
cepts were considered as random effects and assumed to
be correlated. In addition, time was computed as a loga-
rithmic2 variable and included as a fixed effect. For evalu-
ating model fit, the root mean squared error (RMSE) was
obtained from a leave-one-out-cross-validation approach,
and the conditional pseudo R2 for generalized linear
mixed models was calculated.

Primary task efficiency
After exclusions, the analysis of primary task efficiency
operated on n = 103 datasets. As indicated by Fig. 4, sig-
nificant contributions resulted for the linear time pre-
dictor, β = .166, standard error (SE) = 0.030, t(683) =
5.609, p < .001, the logarithmic time predictor, β = 0.118,
SE = 0.026, t(6385) = 4.573, p < .001, and condition, β =
−.070, SE = 0.031, t(100) = − 2.220, p = .029. No signifi-
cant interaction between time and condition could be
observed, β = −.031, SE = 0.018, t(101) = − 1.726, p = .087.
The model achieved an acceptable fit with RMSE = 0.936
and R2 = .197 and supports hypothesis 1a.

Secondary task efficiency
When analyzing secondary task efficiency, one additional
dataset had to be excluded from the sample due to high
noise in the recorded speech signal, resulting in a sub-
sample of n = 102 participants. Corresponding to the
prevention of distraction effects on the primary task
from an overly complex secondary task, participants
achieved a predominantly high word accuracy (M = 0.95,
SD = 0.15). As visually supported by Fig. 5, the results re-
vealed an increasing secondary task performance effi-
ciency over time as well. In more detail, standardized
coefficients showed a significant logarithmic time pre-
dictor, β = .160, SE = 0.022, t(6323) = 7.392, p < .001,
whereas no significance could be obtained for the linear
time predictor, β = .029, SE = 0.028, t(361) = 1.022, p
= .307, the effect of condition, β = −.044, SE = 0.062,
t(99) = − 0.711, p = .479, and the interaction between
time and condition, β = −.006, SE = 0.021, t(100) = −
0.271, p = .787. The overall model achieved a consider-
able fit with RMSE = 0.912 and R2 = .445 and supports
hypothesis 1a.

Speech-related parameters
Corresponding to secondary task performance, results
are based on n = 102 participants. Time series regres-
sions with linear and logarithmic trend predictors, sepa-
rated by conditions as depicted in Fig. 6, support
decreases in cognitive load over time in terms of mean
pause duration, R2

easy = .063 and R2
difficult = .216. In

terms of number of pauses and articulation rate, the
models achieved R2

easy = .131 and R2
difficult = .311 for

Fig. 4 Changes in performance in primary task efficiency over the task. Filled dots and empty rhombi show empirical mean values per trial, lines
indicate predicted mean values. Error bars indicate 95% confidence intervals from empirical observations
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number of pauses and R2
easy = .165 and R2

difficult = .268
for articulation rate. Although amounts of explained
variance differ between measures and conditions, the
overall trend supports hypothesis 1a.

Physiological parameters
Due to technical errors in the recorded data, two add-
itional datasets had to be excluded from the analysis,
resulting in a subsample of n = 101 participants. Assuming
additive time series with trend and seasonal components,
analyses indicate a decreasing trend of HR and SCR over
the task and show a repetitive seasonal pattern across
“subtasks” within each trial. Logarithmic time series re-
gression models, including linear and nonlinear trend pre-
dictors as well as seasonal predictors, achieved R2

easy

= .847 and R2
difficult = .672 for SCR, whereas for HR an

R2
easy = .590 and R2

difficult = .643 could be obtained.
Inspecting the seasonal component in more detail, follow-
ing an initial increase while the sequence of numbers was
presented auditorily, a decreasing progression over the
symbol presentation, symbol response, and symbol feed-
back could be observed. However, in the final step of ver-
bally recalling the memorized numbers, physiological
response parameters increased again. Fig. 7 displays the
respective observed and fitted logarithmic progression
curves, which strongly support hypothesis 1a.

Retention and transfer performance
Retention performance
Results for both retention and transfer performance are
based on n = 103 participants. In terms of retention

performance, in line with hypothesis 2a, significantly
fewer correctly recalled symbol combinations could be
observed in the difficult conditions, t(96.53) = 4.72, p
< .001, d = − 0.92. No significant differences between
conditions regarding the amount of totally recalled
symbol combinations resulted, t(100.99) = − 0.08, p
= .937, d = 0.02. A power3 level of 1 – β = .71 was
achieved for α = .05 and d = 0.5.

Transfer performance
As already indicated from the descriptive values in
Table 2, results revealed significantly faster responses in
the difficult condition, F(1, 101) = 5.59, p = .020, ηp

2

= .05, reversing the pattern postulated in hypothesis 2b.
The significant increase in reaction time with increasing
distortion, F(3, 303) = 15.13, p < .001, ηp

2 = .13, partially
supports hypothesis 2c. A significant interaction between
both factors did not result, F(3, 303) = 0.60, p = .614, ηp

2

= .01, 1 – β = 1.0 for α = .05 and f = .25. Post hoc pairwise
comparisons using Tukey’s honest significant difference
(HSD; Maxwell, 1980) indicate significant differences in
reaction time between the prototypical level and all
levels of distortion (all p’s < .05) as well as the distortion
levels 30 and 90 (p < .001). After correction for inherited
errors, no significant differences result in correct re-
sponses between conditions, F(1, 101) = 0.99, p = .323,
ηp

2 = .01, 1 – β = .941, and levels of distortion, F(3, 303)
= 1.42, p = .237, ηp

2 = .01, 1 – β = 1.0. Likewise, no sig-
nificant interaction between both factors could be de-
tected, F(3, 303) = 0.91, p = .436, ηp

2 = .01, 1 – β = 1.0.
All reported power levels relate to α = .05 and f = .25. In

Fig. 5 Changes in performance in secondary task efficiency over the task. Filled dots and empty rhombi show empirical mean values per trial, lines
indicate predicted mean values. Error bars indicate 95% confidence intervals from empirical observations
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general, with around 70% in each level of distortion, a
high frequency of correct responses was observable (see
Table 2), hinting at a rather stable and robust application
of previously acquired schemata.

Subjective cognitive load ratings
Contrary to hypothesis 1b, no significant differences be-
tween easy and difficult conditions appeared for ICL,
t(90.76) = − 1.13, p = .225, d = 0.306, and ECL, t(97.57) =
− 1.22, p = .226, d = 0.242, although descriptive values
pointed towards lower scores for the easy condition. By
contrast, significantly higher ratings in the easy condi-
tion resulted for GCL, t(98.77) = 2.87, p = .005, d = −
0.568, which directly reverses the pattern postulated in
hypothesis 1b. According to Cohen (1988), the effect
amounts to a medium size. Analyses achieved a power
of 1 – β = .709 for α = .05 and d = 0.5.

Discussion
This study provided insight into the progression and inter-
action of the outlined facets of cognitive load by applying
a multi-method approach to cognitive load assessment. In
line with the postulated hypothesis, performance, speech,
and physiological parameters indicated a logarithmically
decreasing level of cognitive load over the task, hinting at
increasing progress in schema acquisition. The subjective
ratings did not support the initial assumptions, but sup-
port arises for the decrease in retention performance with
higher levels of task complexity. For transfer performance,
the stated hypothesis on increased transfer demands was
partly confirmed in terms of reaction times, while evi-
dence indicated a reversed pattern for task complexity in
this case.
In addition, physiological measures revealed a repeti-

tive seasonal pattern across the subtask routines for SCR

Fig. 6 Observed and fitted logarithmic progressions of speech-related parameters computed per trial in easy (a, c, e) and difficult (b, d, f)
conditions. Graphs in the first row refer to mean pause duration (total duration of silent pauses in seconds divided by the number of silent
pauses). Graphs in the second row refer to the number of pauses (only silent pauses). Graphs in the third row refer to articulation rate (number of
phonemes per second excluding pauses)
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and HR: during the presentation of the auditory stimulus
at the outset of each trial, an increase was observable. It
was followed by a decrease related to the visual presen-
tation of the symbol combination, the motor response
selection, and the visual feedback screen. As soon as the
verbal response on the initially presented digit sequence
was requested, increasing levels in both physiological
measures again resulted. This evidence suggests higher
levels of cognitive load imposed by the auditory-verbal
compared to the visual-motor stimulus-response com-
bination due to the observable initial and final increase
in the emerging signal. Support for this assumption
arises from Posner, Nissen, and Klein (1976), who state
the dominance and increased familiarity of the visual
modality compared to other modalities. Another poten-
tial clarification suggests increased perceptual load
(Lavie, 2010) in the auditory-verbal secondary task, im-
posed by the additional visual stimulus from the
speaker and speech bubble symbols shown on the
screen.

Approaching the obtained pattern in the subjective
cognitive load ratings, at least on a descriptive level par-
ticipants reported lower ICL and ECL. On the one hand,
these scores might have lacked statistical significance
due to the reported insufficient power level of about
71%. On the other hand, as secondary task requirements
did not differ between conditions, the absence of consid-
erable differences in ECL is indeed plausible. Moreover,
adding just one symbol to the combination might not
have resulted in extensive increases in task complexity,
potentially explaining the absence of significant differ-
ences in ICL. The reversed pattern for GCL could have
originated in the particular formulation of the related
questions, which emphasizes the subjective impression
of understanding and knowledge acquisition. This might
have been higher in the easy condition. The authors
(Leppink et al., 2013) also discuss this issue in a more
recent publication that applies this questionnaire (Lep-
pink, Paas, Van Gog, Van der Vleuten, & Van Merriën-
boer, 2014). They attribute the lack of meaningful results

Fig. 7 Observed and fitted logarithmic progressions of SCR and HR over time in easy (a, c) and difficult (b, d) conditions including both seasonal
and trend components

Table 2 Descriptive values of correct responses and reaction time for levels of distortion in conditions

Dist. RTeasy RTdifficult CReasy CRdifficult

M SD M SD M SD M SD

0 2571.14 1079.33 2261.58 1010.11 0.75 0.44 0.71 0.46

30 2692.68 1168.68 2381.37 1116.81 0.70 0.46 0.70 0.46

60 2670.05 1208.94 2485.99 1091.26 0.72 0.45 0.69 0.46

90 2776.47 1178.77 2519.48 1097.61 0.72 0.45 0.68 0.47

Dist. severity of distortion in %, RT reaction time, CR correct responses (min = 0, max = 1), easy easy condition, difficult difficult condition

Wirzberger et al. Cognitive Research: Principles and Implications            (2018) 3:46 Page 12 of 16



for GCL to the substantial redundancy between GCL
and ICL and take this as further evidence for the initially
outlined re-reduction of the three-factor model. By con-
trast, a more recently developed cognitive load question-
naire by Klepsch, Schmitz, and Seufert (2017) addresses
this issue by including the effort component more expli-
citly in the GCL facet and advocates the existing
three-factor model from an assessment perspective. As
the authors claim its applicability for a wider range of
learning contexts and domains, using this questionnaire
instead would be a valuable extension in future studies.
Regarding the schema application task, faster response

times in the difficult condition compared to the easy
condition hint at higher investments of mental resources
with higher levels of task complexity. This explanation
corresponds well with results on contextual interference
(de Croock, Van Merriënboer, & Paas, 1998; Van Mer-
riënboer et al., 2006) which report that learners can
achieve a more robust and stable transfer performance
under conditions that disable fast and easy skill acquisi-
tion. Additional support arises from evidence on desir-
able difficulties in learning situations (Bjork & Bjork,
2011). For instance, when learners must cope with inter-
leaved tasks, they need to maintain sustained engage-
ment of cognitive resources, which fosters performance.
The observed increase in response times with increasing
distortion may result due to the requirement of add-
itional cognitive operations, as distorted symbols de-
mand the identification of the underlying symbol
category before the judgement.

Implications
The pattern of evidence supports a temporal extension
of the CLT framework and reveals a logarithmically de-
creasing cognitive load progression with increasing
schema acquisition. Moreover, results indicate the bene-
fit of an automatic detection of the current level of cog-
nitive load in speech parameters. This could be of value
for realizing adaptive user interfaces in digital learning
contexts that bear the ability to adjust task complexity
and instructional guidance to learners’ needs and prefer-
ences. A particularly promising field of application com-
prises foreign language learning, where spoken interaction
during the learning process constitutes an essential
pre-requisite to shape language skills. User-aligned in-
structional aids within a considered language training pro-
gram might then entail additional explanations or calming
feedback if states of high load are detected by extended
pausing or low articulation frequencies.

Limitations
A potential limitation arises from the differing symbol
complexity, since a visually dominating appearance like
a star, with salient edges and corners, could foster and

speed up schema acquisition and thus benefit symbol re-
call. More detailed analyses of times spent on drawing
different symbols in the retention questionnaire by
mouse tracking or gaze pattern analyses might enlighten
this issue in future research. With reference to the
non-prototypical symbols used for the schema applica-
tion task, although there was a high level of consensus
in the pre-study regarding the correct match to the
underlying prototype, subtle differences still could have
persisted and influenced the findings in the main task.
The lack of significant differences between conditions

in secondary task efficiency could have resulted from
task order ambiguities. Although participants were
instructed to give equal weight to both tasks, the sec-
ondary task occurred first in order and could have been
regarded as more easy and familiar. For this reason, par-
ticipants might have been motivated to prioritize this
task instead of the primary task and assign only free re-
sources to the primary task. In consequence, the easy
task condition would achieve better results in primary
task efficiency, whereas secondary task performance
would stay unaffected by task complexity. The choice of
keeping this fixed presentation order across all trials and
participants is aligned to the original task procedure re-
ported for automated complex span tasks (Redick et al.,
2012; Unsworth et al., 2005). Using a counterbalanced
presentation order instead could result in more balanced
weighting of the priority of both tasks in future studies.
A further valuable extension could address the relation-
ship between both tasks more explicitly to obtain in-
sights into participants’ strategies of cognitive resource
distribution. The additional use of cognitive models (An-
derson, 1983) that compare both task order strategies
could support the clarification of distinct effects of task
order prioritization.

Future research
Prospective research should monitor learners’ focus on
presented symbols or alternative learning material by
inspecting gaze behavior in combination with pupil dila-
tion, as suggested by Foroughi, Sibley, and Coyne (2017)
and Mitra, McNeal, and Bondell (2017). Another prom-
ising extension incorporates the transfer of the obtained
patterns and mechanisms to more applied task settings
in a different task domain like motor learning. In this
domain, an additional step could involve the inclusion of
a spatial dimension or the use of animated stimuli or
motor sequences, and distinct audio-verbal secondary
tasks with a different task order are suitable as well. A
further interesting extension takes evidence on modality
compatibility in dual-task settings (Hazeltine et al.,
2006) into account and inspects the use of incompatible
content-modality matchings.
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Conclusion
The study applied a multi-measure framework of cogni-
tive load assessment to gain further insights into the
temporal progression of cognitive load during schema
acquisition. Results replicate the logarithmic pattern of
change over the task observed in prior research and re-
veal influences of task complexity and situational con-
straints. In summary, the promising approach holds
value to address existing research gaps in cognitive load
research and gain better insights into changing demands
from schema acquisition in learning settings.

Endnotes
1This exclusion involved seven participants, which cor-

responds to about 6% of the sample. For comparison,
Unsworth et al. (2005) report exclusion rates of 15%.

2In line with Wirzberger et al. (2017), alternative linear and
quadratic progression models were tested as well, but not re-
ported due to the confirmed advantage of the logarithmic
model and the lack of benefit for the focus of this study.

3Power analyses refer to theoretically assumed population
effect sizes to provide a broader informative value for the
reasoning about non-significant results (O'Keefe, 2007).
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